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SUMMARY 

 

This document provides a description on methodology and software for genetic nurture effects 

estimation using polygenic scores (PGS), including recommendations based on simulation 

work and emerging literature. Example code for PGS generation, simulations and models 

discussed is provided in appendix.  

 

 

TABLE OF CONTENTS 

 

Summary .................................................................................................................................... 2 
Table of contents ........................................................................................................................ 2 
1 Introduction ........................................................................................................................ 3 

1.1 Purpose and Scope ...................................................................................................... 3 
1.2 References to other FAMILY Documents .................................................................. 3 
1.3 Definitions, Abbreviations and Acronyms .................................................................. 3 

2 summary of methodology .................................................................................................. 4 
2.1 PGS methods to estimate genetic nurture ................................................................... 4 

2.1.1 Separating genetic nurture from assortative mating ............................................ 7 
2.1.2 Missing parental genotypes.................................................................................. 9 

3 statistical power and empirical application ...................................................................... 11 
3.1 Review of simulation studies .................................................................................... 11 

3.1.1 An empirical application of the trio design along with power simulations in the 

MoBa cohort .................................................................................................................... 11 
4 Literature references ........................................................................................................ 13 
5 Appendices ....................................................................................................................... 14 

 

  



FAMILY Deliverable 3.1          Page 3 of  14 

1 INTRODUCTION 

1.1 Purpose and Scope 
 

This document provides an overview of methods for estimating genetic nurture effects using 

polygenic scores within families. Throughout the document, we highlight recent advances in 

this active area of research, discussing issues of bias and statistical power for indirect genetic 

effects in the two-generation (parent-offspring trios) design while signposting relevant 

resources. We provide recommendations based on the literature and report on empirical work 

we conducted in the Norwegian Mother, Father and Child Cohort Study (MoBA) using the trio 

design, as well as on power simulations based on realistic estimates of indirect genetic effects 

for childhood neuropsychiatric related traits. Finally, we provide code for generating PGS, 

quantify statistical power and estimate direct and indirect genetic effects in the trio design. 

 

1.2 References to other FAMILY Documents 

• FAMILY DoA  

1.3 Definitions, Abbreviations and Acronyms 

 

Table 1 List of Abbreviations and Acronyms 

Abbreviation/ 

Acronym 
DEFINITION 

PGS Polygenic scores 

DGE Direct Genetic Effects 

IGE Indirect Genetic effects 

AM Assortative Mating 
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2 SUMMARY OF METHODOLOGY 

2.1 PGS methods to estimate genetic nurture 

 

Several methods employing polygenic scores in multi-generational (e.g., parent-offspring trios) 

and other family-level data (e.g., sibling data) have been developed to separately estimate direct 

genetic effects (DGE) and indirect genetic effects (IGE). DGE capture the intergenerational 

process of genetic transmission, which leads to causal links between genotypes and phenotypes 

within a person (Gc* -> Yc*, Figure 1). In family settings, IGE (partly) capture an 

intergenerational process of so-called vertical (cultural) transmission, leading to genotypes 

causally influencing phenotypes between persons within families. This arises because children 

‘inherit’ phenotypes associated with their parents' genotypes, leading to a (passive) gene-

environment correlation (Gc* <- Gm* -> Em*; Figure 1). While IGE may happen between 

unrelated individuals, within a multigenerational setting they are often referred to as genetic 

nurture, as they are thought to capture the indirect link from parents' genomes to child 

phenotypes via the rearing environment where children grow up (GM* -> Em* -> Yc*; Figure 

1). Figure 1 is a depiction of this process (adapted from Pingault et al., 2022).  

 

 
 
Figure 1. Genetic nurture. Genetic nurture (or familial genetic effects) occurs when parental genetics 

influence offspring outcomes via environmental pathways, for example, GM*→EM*→YC* for mothers. 

Note: child genetics (GC*), mother genetics (Gm*), father genetics (Gf*). E* parental nurturing 

envieonment. Yc* child phenotype.  Adapted from Pingault et al., 2022.  

 

Some methods split individual polygenic scores based on transmitted and non-transmitted 

alleles, which in turn are related to child phenotypes to estimate these direct and indirect 

pathways of transmission. For example, PGS based on non-transmitted alleles can relate to 

child phenotypes only via indirect pathways (i.e., they cannot reflect a process of genetic 

transmission). Other models equivalently employ non-split polygenic scores within 

multivariable models, for example, jointly estimating parent-offspring PGS effects on child 
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phenotypes. Here, the only way in which parent PGS can affect child phenotypes, conditional 

on child genotypes (i.e. controlling for genetic transmission), is again via indirect pathways of 

transmission, such as the family environment. 

 

Importantly, estimates of DGE and IGE may be affected by genetic and environmental 

confounding (including assortative mating and population stratification). While we note that 

all these models are more or less affected by these types of confounding, different models break 

down in different ways depending on the underlying data generating mechanism and the given 

bias at play (Balbona et al., 2022; Demange et al., 2022). Table 1 summarizes these designs 

with key references and assumptions/biases. 

 

Design Method Type of data  Key references / 

Example 

empirical study 

Bias of indirect 

genetic effect  

T/NT Estimation of 

PGS effects 

based on 

transmitted vs 

non-transmitted 

alleles on child 

phenotypes  

Genotyped 

Parent-

offspring 

trios + child 

phenotypes 

Kong et al., 2020 

Veller & Coop, 

2024 

May be particularly 

subject to selection 

bias (participation in 

cohorts of complete 

genotyped trios may 

be non-random) 

Trio 

design  

Multivariable 

model jointly 

estimating 

effects of parent 

– offspring PGS  

Genotyped 

Parent 

offspring 

trios + child 

phenotypes 

Tubbs et al., 2020 

Tubbs et al., 2021 

As in the T/NT 

design, may be 

subject to selection 

bias.  

Biased estimates in 

duo analyses when 

missing parental 

genotypes. 

Duo 

design  

Multivariable 

model jointly 

estimating 

effects of one 

parent’s (usually 

maternal) PGS 

and the offspring 

PGS  

Genotyped 

Parent + 

offspring 

duos + child 

phenotypes 

Warrington et al., 

2018 

 

Tubbs et al., 2021 

May be subject to 

selection bias.  

If paternal effects 

exist and are not 

accounted for this 

can lead to biased 

estimates of DGE 

and IGE.  

Adoption - 

PGS 

Comparison of 

PGS effects in 

adopted and 

unadopted 

individuals  

Genotyped 

adopted and 

unadopted 

individuals  

Cheesman et al., 

2020 

Assumptions:  1. 

Prenatal environment 

of biological mother 

does not play a role   

2. Individuals are 

randomly adopted 

into families (no 

third variable 

confounding). 
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3. Representative of 

the general 

population   

Sibling 

differences 

Deviation of a 

sibling PGS 

from the mean 

family PGS 

(mean across 

siblings). 

Genotyped 

siblings  

Selzam et al., 

2019 

Fletcher 2024 

1. More biased by 

siblings’ indirect 

genetic effects than 

other methods.  

2. Direct genetic 

effects may be biased 

when using 

population based 

GWAS PGS.  

Table 1. Summary of family-based designs employing PGS to infer IGE.  

 

Previous work has shown how different designs using PGS to estimate IGE are differentially 

affected by bias, including sibling indirect effects, prenatal environment, population 

stratification, and assortative mating (Fletcher 2024, Demange et al., 2022). Because no single 

approach is immune to all biases, where possible, estimates from different designs should be 

compared to triangulate findings. 

 

For example, the adoptees design is less affected by bias from assortative mating and 

population stratification (Demange et al., 2022, Balbona et al., 2021). However, this design 

makes several assumptions (Table 1) that may not be realistic in practice for many traits of 

interest. Furthermore, this type of data is typically more difficult to accrue in large sample 

sizes, which complicates issues of power, especially for childhood psychopathology-related 

traits, where PGS estimates are typically very small. 

 

Genotyped siblings, on the other hand, are much more readily available across developmental 

cohorts, and therefore within-family methods based on siblings might be easier to implement. 

However, the sibling design may be particularly susceptible to bias of both direct and indirect 

genetic effects when employing population-based GWAS estimates to construct PGS (i.e., PGS 

not based on within-family GWAS estimates), as the mixture of direct and indirect effects is 

not straightforward to tease apart in this design (Fletcher 2024). The trio and the T/NT design 

estimate equivalent quantities in principle and should be affected by bias in similar ways. One 

main consideration (next to others related to power, see the relevant section below), is that the 

NT design needs the additional step of phasing to create pseudo-controls from non-transmitted 

alleles. The added benefit of these two-generation designs (trio and T/NT) over the others is 

the ability to estimate separately maternal and paternal effects. 

 

While the direct genetic effects are unbiased in the trio design (Veller & Coop. 2024), indirect 

genetic effects don’t estimate only genetic nurture but are an amalgam of different confounding 

and indirect processes at play, including environmental and genetic confounding (such as 

assortative mating and residual population stratification). Assortative mating, the non-random 

assortment of individuals on phenotypic traits, is problematic as it can increase genetic 

similarity within families, biasing GWAS estimates and therefore PGS analyses. In fact, AM 

can completely account for estimates of indirect genetic effects obtained within the trio design, 

and we discuss emergent methodology in this regard in turn. 
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2.1.1 Separating genetic nurture from assortative mating 

 

Several studies in large population-based and registry data have shown pervasive assortative 

mating across human complex traits (Border et al., 2020; Border et al., 2021; Torvik et al., 

2022; Sunde et al., 2024 ). Assortative mating induces correlations on variants within and 

across parental haplotypes within individuals, which in turn can inflate estimates of genetic 

effects (indexed by PGS in our case) within and across traits (Veller & Coop, 2024). Within-

family designs, such as the trio design (two-generation model including parent-offspring trios), 

can obtain unbiased estimates of DGE. This design effectively adjusts PGS-trait associations 

for assortative mating (along with other biases affecting between-family variation such as 

population stratification) because, conditional on the parental genotypes, child genotypes vary 

only due to the random segregation of variants at birth. However, these between-family effects 

will be absorbed by the indirect genetic effect estimate in the trio design, which will therefore 

not necessarily only reflect genetic nurture. 

 

A number of different approaches have been developed to attempt to quantify and separate 

assortative mating from genetic nurture effects. Here, we focus on the recently emerging 

literature leveraging PGS and multigenerational models that can be employed across FAMILY 

samples (Table 2). 

One important caveat is that assortative mating is often thought to happen only via phenotypic 

assortment on a trait of interest but can also arise due to matching on 1) correlated phenotypes 

and 2) cultural and ancestry matching—for example, matching on familial characteristics of 

the spouse (Young 2023). A second aspect to consider is whether assortment happened over 

many generations and is thus said to be at equilibrium, or if it’s relatively recent (at 

disequilibrium). For example, in the seminal paper by Kong et al. (2020), which popularized 

the estimation of genetic nurture effects with polygenic scores using the T/NT design, it was 

estimated that AM contributed little to the indirect genetic effect; however, only one generation 

of AM was assumed to be at play. Depending on whether assortative mating happens due to 

phenotypic, environmental, or genetic reasons, and whether it is at equilibrium or not, different 

designs break down in different ways, and this could bias estimates of IGE (Balbona et al., 

2021). In Table 2, we summarize these two-generation study designs that can be employed 

across FAMILY cohorts.  

 

Design method Type of data  

Balbona et al., 

2022 

SEM decomposition Trio genotypes, child and parent phenotypes 

Nivard et al., 

2024 

Multilevel model Trio and genotyped siblings in the parent generation, 

child phenotype 

Young 2023 Estimating 

equations   

Trio genotypes, child phenotype 

Table 2. Two-generation study designs employing PGS to estimate DGE and IGE while teasing a part 

a number of quantities of interest including separating genetic nurture form Assortative mating 
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Within an SEM framework, the approach of Balbona et al., (SEM-PGS) allows for the 

separation of DGE and IGE from assortative mating (AM) and other quantities of interest such 

as vertical (cultural) transmission - the total contributions of a parental trait on the offspring 

trait mediated by the offspring rearing environment (Balbona et al., 2021). This is a very 

flexible method, but requires parental phenotypes in addition to parent and offspring genotypes 

and child phenotypes. In addition, the required predictive power of PGS to be employed in 

these models is much higher than what is typically found for many children emotional and 

behavioural traits at present (r² ~ .01). Furthermore, by default it relies only on phenotypic AM, 

and focuses solely on within-trait, not cross-trait IGE effects (e.g. parental polygenic score for 

depression affecting child depressive symptoms via parental phenotypic depression). The 

model can be extended in many ways to formally test and incorporate different types of 

assortative mating, but this comes at the expense of model complexity. 

A different technique to separate genetic nurture from AM, as well as confounding due to 

different types of stratification, has been proposed by Nivard. This technique combines two 

different designs: the trio design with the sibling difference design (in the parent generation). 

In this design, any association of the parental PGS with the child phenotypes would indicate 

genetic nurture. This is because the DGE component would be captured by the child PGS, and 

between-family IGE induced by any type of stratification would be captured by the mean 

family PGS (mean sibling PGS) in the parent generation. In other words, this design separates 

IGE within families (genuine genetic nurture effects) from IGE between families, due to 

different types of stratification, including multigenerational AM and social stratification. These 

can induce correlations between parental genomes and child phenotypes as in the case of 

passive gene-environment correlation, but are not a result of a ‘nurturing’ process within the 

family. 

As a caveat, the sibling-based part of the model may be especially subject to bias when 

employing population based GWAS PGS (see key references in Table 1). Furthermore, the 

special type of pedigree data this model requires may be unavailable in practice or difficult to 

obtain at large enough sample sizes for the small indirect genetic effects expected in childhood 

psychopathology, thus undermining statistical power. 

Young (2023) proposes a method to separate a number of quantities of interest, including IGE 

from (any type of) AM, given: 1) An estimate of the parental correlation in a given PGS, 2) 

Coefficients from a two-generation model of DGE and IGE, and 3) An estimate of narrow-

sense heritability from twin studies or Relatedness Disequilibrium Regression. 

The method has several strengths, including that it doesn’t assume a particular AM mechanism 

or a specific phenotype through which cultural transmission happens. However, it relies on 

estimates of heritability, and the accuracy of parameter estimates for quantities of interests such 

as IGE, will reflect the precision of those heritability estimates. In addition, when the fraction 

of heritability explained by the PGS is very small, which is often the case for many childhood 

psychopathology PGS estimates, the method can yield biased parameter estimates and 

inaccurate standard errors. 

One final option could be to employ methods that adjust for assortative mating at the GWAS 

level (e.g., Bilghese et al., 2023), to then use these ‘debiased’ summary statistics to generate 

PGS and employ them in within-family analyses to estimate genetic nurture. However, no 

research on the validity of this approach has been conducted yet, and the feasibility of this 

suggestion remains to be tested. 
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Recommendation 

A number of methods to separate assortative mating (AM) from genetic nurture are emerging, 

but efficient implementation may not be feasible across all phenotypes of interest in families. 

For example, owing to a lack statistical power or the precision of PGS estimates. It is important 

for studies to consider designs on a case-by-case basis, taking into account the phenotype of 

interest and the type of assortative mating at play. This will, of course, also depend on the type 

of data at hand. A three-generation model may be the best way to address this problem, but 

inefficient in practice due to data availability. 

 

2.1.2 Missing parental genotypes 

2.1.2.1 Bias  

 

Because of problems with statistical power and selection bias, an important consideration 

across FAMILY cohorts is whether and how to impute missing parental genotypes. Not 

accounting for both parent PGS, for example in duo models (e.g., mother-offspring only 

models), can lead to bias in direct and indirect genetic effects (Tubbs et al., 2021). For example, 

child PGS effects are biased by 2/3 of the paternal indirect genetic effect when this is not 

properly accounted for. 

 

This type of collider effect and consequent bias in parameter estimates will, of course, depend 

on the data generation mechanisms at play. For example, missing paternal genotype data is 

unlikely to lead to bias if the focus is on the effects of maternal genetic effects on child birth 

weight. In this case a duo model may just be the better option in terms of statistical power 

compared to the trio design (Tubbs et al., 2021). 

 

Recommendation: 

A recommendation for FAMILY cohorts is to perform analyses on all available data (family 

duos), but compare estimates with complete family trios and base conclusions from careful 

consideration of evidence from both designs. 

 

In addition, one option is to attempt to adjust the duo model estimates based on the known bias. 

For example, assuming equal maternal and paternal effects, one could adjust downwardly the 

child PGS effects by 2/3 of the indirect effect and upwardly the maternal indirect effects by 

1/3. These can, in turn, be compared to the estimates obtained from the trio model. 

 

2.1.2.2 Imputation 

  

Another option is to perform imputation of parental genomic data. A number of groups have 

developed methodology to this end. Table 3 summarises key references in this space.  

 

Method Software Type of data  Key 

reference 

Mendelian 

imputation  

SNiPar 

(https://github.com/AlexTISYoung/snipar) 

Nuclear 

family   

Young et 

al., 2022 
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Imputation 

form sibling 

pairs 

Impish 

(https://evansgroup.di.uq.edu.au/IMPISH/) 

Sib/half 

sibling pairs 

Hwang et 

al., 2020 

SNP/PGS 

SEM 

imputation  

 Nuclear 

family 

Tubbs et 

al., 2021 

Table 3. Methods and software for imputation of parental genetic data.  

 

While no systematic comparison is available at present, these methods are equivalent in 

principle, but in practice differ in the actual estimation procedure, computational demands, and 

type of data used (e.g. siblings vs nuclear family).  

 

In the most basic way, imputation may be performed at the level of PGS imputing the missing 

parent PGS using the PGS for the child and the other parent. In this scenario for example the 

father PGS would be obtained from the residual of the child PGS regressed on the mother PGS.  

 

Alternatively, handling missingness of PGS using Full Information Maximum Likelihood 

(FIML) in SEM could be considered. However, the extent to which this latter approach is valid 

and provides unbiased estimates while recovering power is not clear. 

 

Recommendation 

 

Depending on the data at hand, choose at least one imputation method and compare estimates 

retrieved to those from the complete trio data, if available. A power calculator under different 

imputation scenarios and types of data available (e.g., duos vs trios) is provided here: 

https://evansgroup.di.uq.edu.au/power-calculators.html  

 

In the appendix, we provide code to perform power simulations and estimate DGE and IGE 

under the simple scenario where genotyped trio data is available. 

  

https://evansgroup.di.uq.edu.au/power-calculators.html
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3  STATISTICAL POWER AND EMPIRICAL APPLICATION 
 

Little research has been conducted on the statical power between different approaches to detect 

indirect genetic effects (e.g. T/NT vs Trio).  Power calculations are also complicated by 

considerations around biases such as assortative mating. Hence any comparison of statical 

power for these approaches will have to necessarily assume absence of assortative mating (and 

other confounding).  

3.1 Review of simulation studies 

 

In a simulation comparison (Tubbs et al., 2020) between two different applications of the T/NT 

approach and the trio design, all designs equivalently provided unbiased estimates of genetic 

nurture effects. However, the trio design was found to outperform the T/NT designs in terms 

of statistical power, specifically showing a 1/3 increase in power to detect genetic nurture over 

the split scores. 

 

The SEM PGS (Balbona et al., 2020) is a more sophisticated version of the trio design, but it 

requires sample sizes well above 16,000 family trios (with genetic and phenotypic data in the 

parent generation) to reach a standard error below 0.05 and thus adequate power for the effect 

sizes expected for genetic nurture effects in childhood psychopathology. For reference see 

empirical estimates derived from the MoBA cohort (below). 

 

In sum, the most feasible approach in terms of power across FAMILY cohorts will be the 

duo/trio design (a two-generation model employing PGS) over other methods. 

 

3.1.1 An empirical application of the trio design along with power simulations in 

the MoBa cohort 

 

In WP3 we conducted empirical simulations using measures of childhood psychopathology 

from the MoBa cohort across a range of realistic estimates of genetic nurture effects. We report 

on these simulations in detail in this online preprint: https://osf.io/preprints/psyarxiv/w4psd 

 

Briefly, using the largest available set of complete genotyped trios with available phenotypic 

data on several measures of psychopathology in MoBA (N = 15,000), we performed power 

analyses for parent-offspring polygenic score (PGS) effects across 10,000 iterations at our fixed 

sample size. Parameters for the child and mother PGS were fixed to explain 0.2% and 0.1% of 

the variance respectively, while the father PGS was varied across three parameters (betas = .03, 

.01, .001). We show that at the current available sample size across these measures we had at 

least 80% power to detect effect sizes as small as beta = .03 for genetic nurture. Code to 

reproduce these analyses and summary-level data of these simulations is available here: 

https://github.com/AndreAllegrini/IRISK-p. 

 

We then applied the trio design to test direct and indirect genetic effects of neuropsychiatric-

related traits on different psychopathology measures, including the p-factor (a latent factor 

constructed from different childhood emotional and behavioral difficulty domains). We 

detected pervasive shrinkage in PGS estimates for neuropsychiatric-related traits when 

adjusting for parental PGS, suggesting indirect genetic effects at play. By and large we were 

adequately powered for the effect sizes detected for parental PGS.  

https://osf.io/preprints/psyarxiv/w4psd
https://github.com/AndreAllegrini/IRISK-p
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Figure 2. Polygenic scores contributions across emotional and behavioural difficulties domains. 

Top panel: Comparison of standardized regression coefficients for offspring PGS effects from 

conditional to unconditional models, showing relative importance of PGS contributions across 

emotional and behavioural difficulties.  Faded: does not survive correction for multiple testing/not 

selected over the null model. Bottom panel: Shrinkage of standardized effects for the offspring PGS 

from unconditional (i.e. green) to conditional (i.e. red) models across emotional and behavioural 

difficulties domains, restricted to models favoured over the null-model (PC1 PGS not shown for clarity).  

Estimates are plotted in descending order of shrinkage. 

Note: ADHD = attention deficit hyperactivity disorder, AUT = autism, BIP = bipolar disorder, SCZ = 

schizophrenia, AN = anorexia nervosa, ANX = anxiety, PTSD = post-traumatic stress disorder, DEP = 

broad depression, CPAIN = chronic pain, PC1 = first unrotated principal component of all 

neuropsychiatric (and related) PGS, PC1 psych = first unrotated principal component of all 

neuropsychiatric PGS. Facets: ODD = Oppositional Defiant Disorder; CND = Conduct Disorder; HYP 

= Hyperactivity; INA = Inattention; DEP = Depression; ANX = Anxiety. Adapted from Allegrini et al., 

2023. 
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5 APPENDICES 
 

1. Pipeline to generate polygenic scores in LDpred2: 

 

2. Code to estimate the trio model within SEM and perform power simulations based on 

this design across a number of sample sizes. Based on Tubbs et al., 2020.   

 

3.  (Power) simulation code based on largest sample size and set of psychopathology 

measures in the MoBa cohort.  
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