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SUMMARY

This document provides a description on methodology and software for genetic nurture effects
estimation using polygenic scores (PGS), including recommendations based on simulation
work and emerging literature. Example code for PGS generation, simulations and models
discussed is provided in appendix.
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1 INTRODUCTION
1.1 Purpose and Scope

This document provides an overview of methods for estimating genetic nurture effects using
polygenic scores within families. Throughout the document, we highlight recent advances in
this active area of research, discussing issues of bias and statistical power for indirect genetic
effects in the two-generation (parent-offspring trios) design while signposting relevant
resources. We provide recommendations based on the literature and report on empirical work
we conducted in the Norwegian Mother, Father and Child Cohort Study (MoBA) using the trio
design, as well as on power simulations based on realistic estimates of indirect genetic effects
for childhood neuropsychiatric related traits. Finally, we provide code for generating PGS,
quantify statistical power and estimate direct and indirect genetic effects in the trio design.

1.2 References to other FAMILY Documents
e FAMILY DoA

1.3 Definitions, Abbreviations and Acronyms

Table 1 List of Abbreviations and Acronyms

Abbreviation/ DEEINITION
Acronym

PGS Polygenic scores

DGE Direct Genetic Effects
IGE Indirect Genetic effects
AM Assortative Mating
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2 SUMMARY OF METHODOLOGY

2.1 PGS methods to estimate genetic nurture

Several methods employing polygenic scores in multi-generational (e.g., parent-offspring trios)
and other family-level data (e.g., sibling data) have been developed to separately estimate direct
genetic effects (DGE) and indirect genetic effects (IGE). DGE capture the intergenerational
process of genetic transmission, which leads to causal links between genotypes and phenotypes
within a person (Gc* -> Yc*, Figure 1). In family settings, IGE (partly) capture an
intergenerational process of so-called vertical (cultural) transmission, leading to genotypes
causally influencing phenotypes between persons within families. This arises because children
‘inherit’ phenotypes associated with their parents' genotypes, leading to a (passive) gene-
environment correlation (Gc* <- Gm* -> Em*; Figure 1). While IGE may happen between
unrelated individuals, within a multigenerational setting they are often referred to as genetic
nurture, as they are thought to capture the indirect link from parents’ genomes to child
phenotypes via the rearing environment where children grow up (GM* -> Em* -> Y¢*; Figure
1). Figure 1 is a depiction of this process (adapted from Pingault et al., 2022).

Figure 1. Genetic nurture. Genetic nurture (or familial genetic effects) occurs when parental genetics
influence offspring outcomes via environmental pathways, for example, Gu*—Ew*—Yc* for mothers.
Note: child genetics (Gc*), mother genetics (Gn*), father genetics (Gf*). E* parental nurturing
envieonment. Yc* child phenotype. Adapted from Pingault et al., 2022.

Some methods split individual polygenic scores based on transmitted and non-transmitted
alleles, which in turn are related to child phenotypes to estimate these direct and indirect
pathways of transmission. For example, PGS based on non-transmitted alleles can relate to
child phenotypes only via indirect pathways (i.e., they cannot reflect a process of genetic
transmission). Other models equivalently employ non-split polygenic scores within
multivariable models, for example, jointly estimating parent-offspring PGS effects on child
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phenotypes. Here, the only way in which parent PGS can affect child phenotypes, conditional
on child genotypes (i.e. controlling for genetic transmission), is again via indirect pathways of
transmission, such as the family environment.

Importantly, estimates of DGE and IGE may be affected by genetic and environmental
confounding (including assortative mating and population stratification). While we note that
all these models are more or less affected by these types of confounding, different models break
down in different ways depending on the underlying data generating mechanism and the given
bias at play (Balbona et al., 2022; Demange et al., 2022). Table 1 summarizes these designs

with key references and assumptions/biases.

Design Method Type of data | Key references / | Bias of indirect
Example genetic effect
empirical study

TINT Estimation  of | Genotyped Kong et al., 2020 | May be particularly

PGS effects | Parent- Veller & Coop, | subject to selection

based on | offspring 2024 bias (participation in

transmitted  vs | trios + child cohorts of complete
non-transmitted | phenotypes genotyped trios may
alleles on child be non-random)
phenotypes

Trio Multivariable Genotyped Tubbsetal., 2020 | As in the T/NT

design model  jointly | Parent Tubbs etal., 2021 | design, may be

estimating offspring subject to selection
effects of parent | trios + child bias.

— offspring PGS | phenotypes Biased estimates in
duo analyses when
missing parental
genotypes.

Duo Multivariable Genotyped Warrington et al., | May be subject to

design model  jointly | Parent + 12018 selection bias.

estimating offspring If paternal effects
effects of one | duos + child | Tubbsetal., 2021 | exist and are not
parent’s (usually | phenotypes accounted for this
maternal) PGS can lead to biased
and the offspring estimates of DGE

PGS and IGE.

Adoption - | Comparison of | Genotyped Cheesman et al., | Assumptions: 1.

PGS PGS effects in | adopted and | 2020 Prenatal environment

adopted and | unadopted of biological mother

unadopted individuals does not play a role

individuals 2. Individuals are
randomly  adopted
into families (no
third variable
confounding).
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3. Representative of
the general
population
Sibling Deviation of a | Genotyped Selzam et al, |1 More biased by
differences | sibling PGS | siblings 2019 siblings’ indirect
from the mean Fletcher 2024 genetic effects than
family PGS other methods.
(mean  across 2. Direct genetic
siblings). effects may be biased
when using
population based
GWAS PGS.

Table 1. Summary of family-based designs employing PGS to infer IGE.

Previous work has shown how different designs using PGS to estimate IGE are differentially
affected by bias, including sibling indirect effects, prenatal environment, population
stratification, and assortative mating (Fletcher 2024, Demange et al., 2022). Because no single
approach is immune to all biases, where possible, estimates from different designs should be
compared to triangulate findings.

For example, the adoptees design is less affected by bias from assortative mating and
population stratification (Demange et al., 2022, Balbona et al., 2021). However, this design
makes several assumptions (Table 1) that may not be realistic in practice for many traits of
interest. Furthermore, this type of data is typically more difficult to accrue in large sample
sizes, which complicates issues of power, especially for childhood psychopathology-related
traits, where PGS estimates are typically very small.

Genotyped siblings, on the other hand, are much more readily available across developmental
cohorts, and therefore within-family methods based on siblings might be easier to implement.
However, the sibling design may be particularly susceptible to bias of both direct and indirect
genetic effects when employing population-based GWAS estimates to construct PGS (i.e., PGS
not based on within-family GWAS estimates), as the mixture of direct and indirect effects is
not straightforward to tease apart in this design (Fletcher 2024). The trio and the T/NT design
estimate equivalent quantities in principle and should be affected by bias in similar ways. One
main consideration (next to others related to power, see the relevant section below), is that the
NT design needs the additional step of phasing to create pseudo-controls from non-transmitted
alleles. The added benefit of these two-generation designs (trio and T/NT) over the others is
the ability to estimate separately maternal and paternal effects.

While the direct genetic effects are unbiased in the trio design (Veller & Coop. 2024), indirect
genetic effects don’t estimate only genetic nurture but are an amalgam of different confounding
and indirect processes at play, including environmental and genetic confounding (such as
assortative mating and residual population stratification). Assortative mating, the non-random
assortment of individuals on phenotypic traits, is problematic as it can increase genetic
similarity within families, biasing GWAS estimates and therefore PGS analyses. In fact, AM
can completely account for estimates of indirect genetic effects obtained within the trio design,
and we discuss emergent methodology in this regard in turn.
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2.1.1 Separating genetic nurture from assortative mating

Several studies in large population-based and registry data have shown pervasive assortative
mating across human complex traits (Border et al., 2020; Border et al., 2021; Torvik et al.,
2022; Sunde et al., 2024 ). Assortative mating induces correlations on variants within and
across parental haplotypes within individuals, which in turn can inflate estimates of genetic
effects (indexed by PGS in our case) within and across traits (Veller & Coop, 2024). Within-
family designs, such as the trio design (two-generation model including parent-offspring trios),
can obtain unbiased estimates of DGE. This design effectively adjusts PGS-trait associations
for assortative mating (along with other biases affecting between-family variation such as
population stratification) because, conditional on the parental genotypes, child genotypes vary
only due to the random segregation of variants at birth. However, these between-family effects
will be absorbed by the indirect genetic effect estimate in the trio design, which will therefore
not necessarily only reflect genetic nurture.

A number of different approaches have been developed to attempt to quantify and separate
assortative mating from genetic nurture effects. Here, we focus on the recently emerging
literature leveraging PGS and multigenerational models that can be employed across FAMILY
samples (Table 2).

One important caveat is that assortative mating is often thought to happen only via phenotypic
assortment on a trait of interest but can also arise due to matching on 1) correlated phenotypes
and 2) cultural and ancestry matching—for example, matching on familial characteristics of
the spouse (Young 2023). A second aspect to consider is whether assortment happened over
many generations and is thus said to be at equilibrium, or if it’s relatively recent (at
disequilibrium). For example, in the seminal paper by Kong et al. (2020), which popularized
the estimation of genetic nurture effects with polygenic scores using the T/NT design, it was
estimated that AM contributed little to the indirect genetic effect; however, only one generation
of AM was assumed to be at play. Depending on whether assortative mating happens due to
phenotypic, environmental, or genetic reasons, and whether it is at equilibrium or not, different
designs break down in different ways, and this could bias estimates of IGE (Balbona et al.,
2021). In Table 2, we summarize these two-generation study designs that can be employed
across FAMILY cohorts.

Design method Type of data

Balbona et al., | SEM decomposition | Trio genotypes, child and parent phenotypes
2022

Nivard et al., | Multilevel model Trio and genotyped siblings in the parent generation,
2024 child phenotype
Young 2023 | Estimating Trio genotypes, child phenotype

equations

Table 2. Two-generation study designs employing PGS to estimate DGE and IGE while teasing a part
a number of quantities of interest including separating genetic nurture form Assortative mating

FAMILY Deliverable 3.1 Page 7 of 14



Within an SEM framework, the approach of Balbona et al., (SEM-PGS) allows for the
separation of DGE and IGE from assortative mating (AM) and other quantities of interest such
as vertical (cultural) transmission - the total contributions of a parental trait on the offspring
trait mediated by the offspring rearing environment (Balbona et al., 2021). This is a very
flexible method, but requires parental phenotypes in addition to parent and offspring genotypes
and child phenotypes. In addition, the required predictive power of PGS to be employed in
these models is much higher than what is typically found for many children emotional and
behavioural traits at present (r2 ~ .01). Furthermore, by default it relies only on phenotypic AM,
and focuses solely on within-trait, not cross-trait IGE effects (e.g. parental polygenic score for
depression affecting child depressive symptoms via parental phenotypic depression). The
model can be extended in many ways to formally test and incorporate different types of
assortative mating, but this comes at the expense of model complexity.

A different technique to separate genetic nurture from AM, as well as confounding due to
different types of stratification, has been proposed by Nivard. This technique combines two
different designs: the trio design with the sibling difference design (in the parent generation).
In this design, any association of the parental PGS with the child phenotypes would indicate
genetic nurture. This is because the DGE component would be captured by the child PGS, and
between-family IGE induced by any type of stratification would be captured by the mean
family PGS (mean sibling PGS) in the parent generation. In other words, this design separates
IGE within families (genuine genetic nurture effects) from IGE between families, due to
different types of stratification, including multigenerational AM and social stratification. These
can induce correlations between parental genomes and child phenotypes as in the case of
passive gene-environment correlation, but are not a result of a ‘nurturing’ process within the
family.

As a caveat, the sibling-based part of the model may be especially subject to bias when
employing population based GWAS PGS (see key references in Table 1). Furthermore, the
special type of pedigree data this model requires may be unavailable in practice or difficult to
obtain at large enough sample sizes for the small indirect genetic effects expected in childhood
psychopathology, thus undermining statistical power.

Young (2023) proposes a method to separate a number of quantities of interest, including IGE
from (any type of) AM, given: 1) An estimate of the parental correlation in a given PGS, 2)
Coefficients from a two-generation model of DGE and IGE, and 3) An estimate of narrow-
sense heritability from twin studies or Relatedness Disequilibrium Regression.

The method has several strengths, including that it doesn’t assume a particular AM mechanism
or a specific phenotype through which cultural transmission happens. However, it relies on
estimates of heritability, and the accuracy of parameter estimates for quantities of interests such
as IGE, will reflect the precision of those heritability estimates. In addition, when the fraction
of heritability explained by the PGS is very small, which is often the case for many childhood
psychopathology PGS estimates, the method can yield biased parameter estimates and
inaccurate standard errors.

One final option could be to employ methods that adjust for assortative mating at the GWAS
level (e.g., Bilghese et al., 2023), to then use these ‘debiased’ summary statistics to generate
PGS and employ them in within-family analyses to estimate genetic nurture. However, no
research on the validity of this approach has been conducted yet, and the feasibility of this
suggestion remains to be tested.
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Recommendation

A number of methods to separate assortative mating (AM) from genetic nurture are emerging,
but efficient implementation may not be feasible across all phenotypes of interest in families.
For example, owing to a lack statistical power or the precision of PGS estimates. It is important
for studies to consider designs on a case-by-case basis, taking into account the phenotype of
interest and the type of assortative mating at play. This will, of course, also depend on the type
of data at hand. A three-generation model may be the best way to address this problem, but
inefficient in practice due to data availability.

2.1.2 Missing parental genotypes
2.1.2.1 Bias

Because of problems with statistical power and selection bias, an important consideration
across FAMILY cohorts is whether and how to impute missing parental genotypes. Not
accounting for both parent PGS, for example in duo models (e.g., mother-offspring only
models), can lead to bias in direct and indirect genetic effects (Tubbs et al., 2021). For example,
child PGS effects are biased by 2/3 of the paternal indirect genetic effect when this is not
properly accounted for.

This type of collider effect and consequent bias in parameter estimates will, of course, depend
on the data generation mechanisms at play. For example, missing paternal genotype data is
unlikely to lead to bias if the focus is on the effects of maternal genetic effects on child birth
weight. In this case a duo model may just be the better option in terms of statistical power
compared to the trio design (Tubbs et al., 2021).

Recommendation:

A recommendation for FAMILY cohorts is to perform analyses on all available data (family
duos), but compare estimates with complete family trios and base conclusions from careful
consideration of evidence from both designs.

In addition, one option is to attempt to adjust the duo model estimates based on the known bias.
For example, assuming equal maternal and paternal effects, one could adjust downwardly the
child PGS effects by 2/3 of the indirect effect and upwardly the maternal indirect effects by
1/3. These can, in turn, be compared to the estimates obtained from the trio model.

2.1.2.2 Imputation

Another option is to perform imputation of parental genomic data. A number of groups have
developed methodology to this end. Table 3 summarises key references in this space.

Method Software Type of data | Key
reference

Mendelian SNiPar Nuclear Young et

imputation (https://github.com/AlexTISYoung/snipar) | family al., 2022
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Imputation Impish Sib/half Hwang et
form sibling | (https://evansgroup.di.ug.edu.au/IMPISH/) | sibling pairs | al., 2020
pairs

SNP/PGS Nuclear Tubbs et
SEM family al., 2021
imputation

Table 3. Methods and software for imputation of parental genetic data.

While no systematic comparison is available at present, these methods are equivalent in
principle, but in practice differ in the actual estimation procedure, computational demands, and
type of data used (e.g. siblings vs nuclear family).

In the most basic way, imputation may be performed at the level of PGS imputing the missing
parent PGS using the PGS for the child and the other parent. In this scenario for example the
father PGS would be obtained from the residual of the child PGS regressed on the mother PGS.

Alternatively, handling missingness of PGS using Full Information Maximum Likelihood
(FIML) in SEM could be considered. However, the extent to which this latter approach is valid
and provides unbiased estimates while recovering power is not clear.

Recommendation

Depending on the data at hand, choose at least one imputation method and compare estimates
retrieved to those from the complete trio data, if available. A power calculator under different
imputation scenarios and types of data available (e.g., duos vs trios) is provided here:
https://evansgroup.di.ug.edu.au/power-calculators.html

In the appendix, we provide code to perform power simulations and estimate DGE and IGE
under the simple scenario where genotyped trio data is available.
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3  STATISTICAL POWER AND EMPIRICAL APPLICATION

Little research has been conducted on the statical power between different approaches to detect
indirect genetic effects (e.g. T/NT vs Trio). Power calculations are also complicated by
considerations around biases such as assortative mating. Hence any comparison of statical
power for these approaches will have to necessarily assume absence of assortative mating (and
other confounding).

3.1 Review of simulation studies

In a simulation comparison (Tubbs et al., 2020) between two different applications of the T/NT
approach and the trio design, all designs equivalently provided unbiased estimates of genetic
nurture effects. However, the trio design was found to outperform the T/NT designs in terms
of statistical power, specifically showing a 1/3 increase in power to detect genetic nurture over
the split scores.

The SEM PGS (Balbona et al., 2020) is a more sophisticated version of the trio design, but it
requires sample sizes well above 16,000 family trios (with genetic and phenotypic data in the
parent generation) to reach a standard error below 0.05 and thus adequate power for the effect
sizes expected for genetic nurture effects in childhood psychopathology. For reference see
empirical estimates derived from the MoBA cohort (below).

In sum, the most feasible approach in terms of power across FAMILY cohorts will be the
duof/trio design (a two-generation model employing PGS) over other methods.

3.1.1 Anempirical application of the trio design along with power simulations in
the MoBa cohort

In WP3 we conducted empirical simulations using measures of childhood psychopathology
from the MoBa cohort across a range of realistic estimates of genetic nurture effects. We report
on these simulations in detail in this online preprint: https://osf.io/preprints/psyarxiv/w4psd

Briefly, using the largest available set of complete genotyped trios with available phenotypic
data on several measures of psychopathology in MoBA (N = 15,000), we performed power
analyses for parent-offspring polygenic score (PGS) effects across 10,000 iterations at our fixed
sample size. Parameters for the child and mother PGS were fixed to explain 0.2% and 0.1% of
the variance respectively, while the father PGS was varied across three parameters (betas = .03,
.01, .001). We show that at the current available sample size across these measures we had at
least 80% power to detect effect sizes as small as beta = .03 for genetic nurture. Code to
reproduce these analyses and summary-level data of these simulations is available here:
https://github.com/AndreAllegrini/IRISK-p.

We then applied the trio design to test direct and indirect genetic effects of neuropsychiatric-
related traits on different psychopathology measures, including the p-factor (a latent factor
constructed from different childhood emotional and behavioral difficulty domains). We
detected pervasive shrinkage in PGS estimates for neuropsychiatric-related traits when
adjusting for parental PGS, suggesting indirect genetic effects at play. By and large we were
adequately powered for the effect sizes detected for parental PGS.
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Figure 2. Polygenic scores contributions across emotional and behavioural difficulties domains.
Top panel: Comparison of standardized regression coefficients for offspring PGS effects from
conditional to unconditional models, showing relative importance of PGS contributions across
emotional and behavioural difficulties. Faded: does not survive correction for multiple testing/not
selected over the null model. Bottom panel: Shrinkage of standardized effects for the offspring PGS
from unconditional (i.e. green) to conditional (i.e. red) models across emotional and behavioural
difficulties domains, restricted to models favoured over the null-model (PC1 PGS not shown for clarity).
Estimates are plotted in descending order of shrinkage.

Note: ADHD = attention deficit hyperactivity disorder, AUT = autism, BIP = bipolar disorder, SCZ =
schizophrenia, AN = anorexia nervosa, ANX = anxiety, PTSD = post-traumatic stress disorder, DEP =
broad depression, CPAIN = chronic pain, PC1 = first unrotated principal component of all
neuropsychiatric (and related) PGS, PCl psych = first unrotated principal component of all
neuropsychiatric PGS. Facets: ODD = Oppositional Defiant Disorder; CND = Conduct Disorder; HYP
= Hyperactivity; INA = Inattention; DEP = Depression; ANX = Anxiety. Adapted from Allegrini et al.,
2023.
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5 APPENDICES

1. Pipeline to generate polygenic scores in LDpred?2:

2. Code to estimate the trio model within SEM and perform power simulations based on
this design across a number of sample sizes. Based on Tubbs et al., 2020.

3. (Power) simulation code based on largest sample size and set of psychopathology
measures in the MoBa cohort.
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