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Intergenerational transmission of polygenic
predisposition for neuropsychiatric traits on
emotional and behavioural difficulties in
childhood

A. G. Allegrini 1,2 , L. J. Hannigan 3,4,5, L. Frach 1,6, W. Barkhuizen 1,
J. R. Baldwin 1,2, O. A. Andreassen 7, D. Bragantini3,4, L. Hegemann3,4,8,
A. Havdahl3,4,9,10 & J-B. Pingault 1,2,10

Childhood emotional and behavioural difficulties tend to co-occur and often
precede diagnosed neuropsychiatric conditions. Identifying shared and spe-
cific risk factors for early-lifemental health difficulties is therefore essential for
prevention strategies. Here, we examine how parental risk factors shape their
offspring’s emotional and behavioural symptoms (e.g. feelings of anxiety, and
restlessness) using data from 14,959 genotyped family trios from the Norwe-
gian Mother, Father and Child Cohort Study (MoBa). We model maternal
reports of emotional and behavioural symptoms, organizing them into general
and specific domains. We then investigate the direct (genetically transmitted)
and indirect (environmentally mediated) contributions of parental polygenic
risk for neuropsychiatric-related traits and whether these are shared across
symptoms. We observe evidence consistent with an environmental route to
general symptomatology beyond genetic transmission, while also demon-
strating domain-specific direct and indirect genetic contributions. These
findings improve our understanding of early risk pathways that can be tar-
geted in preventive interventions aiming to interrupt the intergenerational
cycle of risk transmission.

Emotional and behavioural difficulties onset during childhood or
adolescence for most individuals1. In turn, symptoms of emotional
and behavioural difficulties that manifest in early life may be har-
bingers of later-onset psychiatric disorders. An aetiological
understanding of emotional and behavioural difficulties is thus

central to advancing our understanding of how neuropsychiatric
conditions develop.

Parental factors, particularly parental neuropsychiatric condi-
tions, are considered important early risk factors contributing to
childhood neuropsychiatric symptomatology2. The transmission of
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neuropsychiatric risk across generations reflects a complex interplay
between genetic and environmental risks. We can specify two broad
types of intergenerational effects, related to so-called ‘direct’ and
‘indirect’ genetic pathways of transmission within families. First, direct
genetic effects originate in an individual’s genome. They follow from
the genetic transmission of risk, whereby parents transmit their
genetic predispositions to their offspring, which in turn relate to
specific individual’s phenotypes (e.g. genetic variants contributing to
anxiety are transmitted to the offspring and, then, directly contribute
to offspring anxiety). Second, indirect genetic effects originate in the
parent genome, but are independent of the child genotype, and are
thought to be accounted for by the family environment (e.g. genetic
variants, even when non-transmitted to the offspring, can affect par-
ental depression, which may in turn affect parenting style and, thus,
indirectly, child anxiety).

The availability of large family-based genotyped cohorts allows us
to untangle direct and indirect genetic effects. This can be done by
jointly modelling parent and offspring genetic predispositions, as
indexed by polygenic scores (PGS). PGS are predictors of the genetic
predisposition of an individual for traits of interest, e.g. the polygenic
score for depression. In this context, an investigation of how
neuropsychiatric-related predispositions are associated with child-
hood emotional and behavioural difficulties can be especially useful in
at least two ways. First, we can obtain unbiased estimates of ‘direct’
polygenic risk contributions. Having unbiased estimates of direct
effects as a reference can be informative formost studies that typically
only comprise singletons and thus cannot take advantage of designs
relying on family structure. In such studies of singletons, estimates of
associations between PGSandoutcomes canbe inflated, or completely
accounted for, by indirect genetic effects3. Indirect genetic effects are
generally understood as effects that originate in another individual’s
genome—typically family members, like parents in the present study—
and aremediated via environmental processes independent of genetic
transmission. The parental genome thus indirectly impacts offspring
outcomes. Indirect genetic effects are often referred to as genetic
nurture due to the hypothesized role of nurturing in this transmission
pathway (e.g. parental genetics shapes nurturing practices within the
family like parenting, which in turn impacts childhood outcomes). In
addition to genetic nurture per se, indirect genetic effects can also
reflect other genuine indirect effects that do not directly involve
within-family nurturing (e.g. parental income affects the choice of
neighbourhood or school which impacts child outcomes). Impor-
tantly, however, estimates of indirect effects can also reflect biases
from genetic and environmental confounding3, including assortative
mating4 and social stratification5. Irrespective of what they are com-
prised of, indirect genetic effects will bias between-family estimates of
genotype–phenotype associations6, but can be adjusted for in within-
family analyses to recover direct genetic effects, such as in the trio
design via estimation of PGS-phenotype effects conditional on the
parental PGS.

Second, jointly modelling parent-offspring PGS in trio models
allows us to gain insights into specific risk factors responsible for
indirect genetic contributions to child emotional and behavioural
difficulties. For example, indirect genetic contributions to child
depression may be explained by parental risk factors beyond depres-
sion, such as parental anxiety and neuroticism, suggesting specific
environmental risk factors for child depression7,8.

Most of the polygenic score work in this area has been spear-
headed by studies investigating educational outcomes9,10, where
indirect genetic effects were found to account for about half the size of
the PGS effect on education11. More recentlymixed evidence is starting
to accumulate in childhood psychiatry12–15. Here, we leverage genomic
data from 14,959 family trios to investigate shared vs specific effects of
parental neuropsychiatric-related risk on emotional and behavioural
difficulties in childhood.

Emotional and behavioural difficulties co-occur in complex ways
throughout development16,17, highlighting the importance of investi-
gating shared and specific predictors. In this context, the latent vari-
able modelling framework allows for the investigation of shared
variation across emotional and behavioural difficulties. Within this
framework, the co-occurrence of symptoms can be organized in
hierarchical structures where shared variance across observed vari-
ables (such as observed difficulties) is captured by latent dimensions
reflecting phenotypic domains. Domains are more specific at lower
levels (e.g. a ‘depression’ domain), and more general at higher levels
(e.g. an ‘internalizing’ domain, reflecting the common variance across,
e.g., depression and anxiety). Typically, a common feature of hier-
archical models is that variance shared across all domains, or the
entirety of observed traits, is captured by a unique general domain,
commonly referred to as ‘the general psychopathology factor’ (or ‘p-
factor'18). Within a common cause framework, this general domain is
purported to explain why neuropsychiatric conditions and symptoms
tend to co-occur.

Every statistical model inherently makes assumptions about the
data and their structure. For example, different hierarchical models
imply distinct mechanisms through which higher-order domains are
linked to observed traits, such as emotional and behavioural
symptoms19. If taken at face value, a corollary of such models is that
risk factors, such as parental neuropsychiatric conditions, are assumed
to link to specific symptoms through broader domains. For example,
parental neuroticism could affect children’s general predisposition to
emotional and behavioural difficulties (p-factor) which, in turn,
impacts narrower domains such as depression, as well as specific
depression symptoms such as fatigue and lowmood [Box 1]. However,
risk factors may be unique to specific symptoms, or express hetero-
geneously at different levels of the hierarchy suggesting a more
nuanced picture (e.g. ref. 20). For example, risk factors for depression
do not consistently associate across depressive symptoms indicating
heterogeneity in this (latent) construct21. In this context, it is important
to investigate how risk factors relate to the building blocks of the
hierarchical structure of neuropsychiatric conditions. We can bring
this idea in the context of childhood emotional and behavioural diffi-
culties by examining how PGS for neuropsychiatric-related traits affect
different levels of the hierarchical structure, i.e. affecting specific
symptoms (e.g., easily distracted), specific domains (e.g., inattention),
or a unique general domain (p-factor).

Previous work has investigated how individual predispositions to
neuropsychiatric conditions, indexed by PGS for neuropsychiatric
(and related) traits, are associated with general and specific emotional
and behavioural difficulties in childhood. This body of research gen-
erally suggests largely transdiagnostic, non-specific effects22,23, albeit
with more nuance depending on the modelling strategy adopted and
the phenotypic domain tapped into by a given PGS24. A limitation of
this body of research is the reliance on samples of singletons. Here, we
implement family-based analyses using genotyped trios, enabling the
estimation of both direct and indirect genetic effects on specific versus
general domains of child emotional and behavioural difficulties, with
implications for interventions. For example, if parental predisposition
to depression shows specific links with child depressive symptoms,
treatment of parental depression may be likely to impact only child
depressive symptoms rather than emotional and behavioural difficul-
ties more generally.

In summary, we leverage data from family trios, using PGS to
investigate the intergenerational transmission of neuropsychiatric-
related predispositions. First, we examine the direct effects of chil-
dren’s polygenic neuropsychiatric-related predispositions on general
and specific emotional and behavioural domains (i.e. adjusted for
confounding by indirect genetic effects). Second, we examine parental
indirect genetic effects on general and specific emotional and beha-
vioural domains. Finally, we test whether direct and indirect genetic
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effects on child emotional and behavioural difficulties are general,
domain-specific, or symptom-specific in nature.

Results
The sample comprised 14,959 genotyped unrelated family trios from
Norway, forwhich at least onephenotypic observationmeasuredwhen

children were aged 8 years was available (“Methods”). As a baseline for
our analyses, we fit a second-order hierarchical model to item-level
data on emotional and behavioural difficulties, specifying domains
corresponding to each of the six scales from which items originated
(top panel Fig. 1). These six symptom scales comprisedmaternal-rated
measures of children’s depression and anxiety symptoms, conduct

BOX 1

Relationship between risk factors and symptoms of behavioural and
emotional difficulties

� 1 � 1 � 1 � 1 � 1

s1 s2 s3 s4 s5

Risk

DEP

a

� 1 � 0.5 � 0.7 � 0.6 � 0.4

s1 s2 s3 s4 s5

Risk

DEP

b

s1 s2 s3 s4 s5

Risk

DEP

c

s1 s2 s3

Depr

s4 s5 s6 s7 s8 s9

Risk

Insomn

P

DEP ANX ...

d

s1 s2 s3

Risk

s4 s5 s6 s7 s8 s9

Neuro

Insomn

P

DEP ANX ...

e

tired s2 s3

Depr

s4 s5 s6 s7 s8 s9

Neuro

Insomn

P

DEP ANX ...

f

DEP depression domain, ANX anxiety domain, P psychopathology
domain, S1–S9 symptoms 1–9, Neuro neuroticism, Depr depression,
Insomn insomnia.

Typically, risk factors for neuropsychiatric phenotypes, such as
emotional and behavioural difficulties, are assessed by testing their
associations with sum scores aggregating across a number of symp-
toms. This modelling framework is statistically equivalent to a struc-
tural equationmodel (SEM)where a latent construct, say depression, is
defined by symptom indicators all contributing the same to this latent
construct (panel a)38. When fitting this model, we are then implicitly
assuming that the effects of a given external risk factor (say maternal
depression) on different depressive symptoms are: 1. completely
mediated by this latent construct, which in turn is causing the symp-
toms and 2. the (mediated) effects of the risk factor on the symptoms
are equivalent. Depending on the construct of interest, this may be
implausible in practice for anygiven risk factor, as shownelsewhere for
depression21. For example, a particular risk factor may bemediated by
the latent construct depression and have different effects on different
symptoms. This can be represented by an SEMmodel where different
symptoms load differently on the latent construct (panel b). However,
risk factorsmay also be unique to particular symptoms. For example, a
predisposition to insomnia may affect fatigue, a symptom of depres-
sion, independently of depression (panel c). This relationship may
however be obscured if we only considered the latent construct

depression (or a sum score thereof) as our level of analysis. In this
context considering different levels of analysis is important to under-
stand shared vs unique contributions of a particular risk factor to
symptom clusters.

In a similar fashion, we can investigate how particular risk factors
relate to different domains of emotional and behavioural difficulties.
Panels ‘d–f’ depict the relationship between different symptom
domains as a hierarchical model where a general domain captures
shared variance across lower-level specific domains. Similar to the
case of depression, we can conceptualize external risk factors as
having shared effects across all symptomdomains of a given hierarchy
(panel d) or only across a subset of such domains (panel e). For
example, parental risk for neuroticism may affect different emotional
and behavioural domains, consistent with mediation by a general
psychopathologydomain (‘P’). Conversely, parental risk for depression
may only be relevant for a subset of domains, for example, depression
and anxiety, but not for others. In turn, this depression risk factor may
exert effects that generalize across all depressive symptoms. Con-
currently, risk factors for particular symptomsmight be at play (say an
individual predisposition to insomnia may affect fatigue as in the
example above). These effects are non-mutually exclusive, but are
likely to be obscured or confounded when using only sum scores or
just one level of analysis.
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problems, oppositional-defiant behaviours, hyperactivity and atten-
tion levels. Supplementary Data 1 reports frequency distributions for
the item-level data. In the baseline model, each symptom was allowed
to load onto one of six first-order domains corresponding to the six
scales of emotional and behavioural difficulties under study. Variance
in common across all first-order domains was further summarised by a
unique second-order general emotional and behavioural difficulties
domain (P). The baseline model fitted the data well (Supplementary
Data 2 and 3).

To assess power for our analyses under different scenarios, we
used weights from this model to simulate data and run power
simulations based on combinations of three data-generating
mechanisms (Supplementary Material). These involved joint
effects of PGS for parents and offspring over the domain-general
(P) or the domain-specific factors. Simulations showed that we had
at least 80% power to detect a small indirect genetic effect of
beta = 0.03 when the data-generating mechanism involved effects
completely mediated by either the general or specific domains
(Figs. S1–S3).

For our main analyses, we calculated polygenic scores for parents
and offspring to test their conditional effects over the general and
specific domains (conditional models, adjusted for all three PGS—
mother, father, offspring), and compared them to estimates obtained
frommodelswhere PGS effectswere considered separately for parents
and offspring (unconditional models, i.e., not adjusted for the PGS of
other family members). To this end, we generated PGS from genome-
wide association study (GWAS) summary statistics for eight psychiatric
and neurodevelopmental conditions: Attention-deficit hyperactivity
disorder (ADHD), Autism spectrum disorder (AUT), Bipolar disorder
(BIP), Schizophrenia (SCZ), Anorexia nervosa (AN), Anxiety (ANX),

Post-traumatic stress disorder (PTSD), and Broad depression (DEP).
Emotional liability, sleep problems and pain are common across many
of these conditions, and PGS for these traits have been previously
found to be associated with general and specific emotional and
behavioural domains in independent samples22,24. We thus also gen-
erated PGS for Neuroticism, Insomnia and Chronic pain (CPAIN). In
addition, we calculated two multivariate PGS obtained from the first
unrotated principal component of the neuropsychiatric PGS (‘poly-
genic-P’) and from all the scores together (‘PC1’ PGS) (Supplementary
Data 4 for the principal component analyses weights). These two dif-
ferent PCA PGS were generated as a sensitivity analysis to first test
whether polygenic-p contributed mainly to the general domain (P),
and second, whether a multivariate PGS extended beyond neu-
ropsychiatric traits alone made similar contributions. Finally, we gen-
erated a PGSbasedon aGWASof hair colour (red) as a negative control
in our analyses.

Direct genetic effects
Among the 14 conditionalmodels, each corresponding toonePGS (e.g.
DEP), 6 were favoured over a null model, suggesting that, together, the
PGS for the father, mother and offspring for the corresponding trait
were predictive of the outcomes, as captured by the general (P)
domain in the second-ordermodel. Figure2displays results for those6
models, i.e. beta estimates (unstandardized solution) and corre-
sponding CIs from conditional models (independent effects of parent-
offspringPGS). These includedADHD, autism,depression, neuroticism
and chronic pain PGSs, as well as both multivariate PGS (PC1 not
shown, Fig. S4 shows results across all PGS). Our negative control was
not favoured over the null model. Supplementary Data 5 and 6 report
results for all conditional and unconditional models.

Fig. 1 | Vignettes of models tested. a Second-order model fit to symptom-level
data across six emotional and behavioural difficulties scales. b Four models tested
for each polygenic score: null model (polygenic scores are not associated with any
outcome), P-mediated model, domain-heterogeneity model and symptom-

heterogeneity model. ODD oppositional-defiant domain, CND conduct domain,
HYP hyperactivity domain, INA inattention domain, DEP depression domain, ANX
anxiety domain.
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Direct genetic effects (i.e. child effects in conditional models
represented in Fig. 2) were observed across all emotional and beha-
vioural difficulties domains using PGS for polygenic-P (standardized
beta range = 0.043–0.075), depression (std beta = 0.028–0.062), and
ADHD (std beta = 0.071–0.131, with the exception of the anxiety
domain). Direct genetic effects with more specificity were also iden-
tified. For example, effects of PGS for chronic pain (std
beta = 0.041–0.058) were evident in all domains except on emotional
problems, and the neuroticism PGS associated only with anxiety (std
beta = 0.078) and oppositional-defiant domains (std beta = 0.034).

Indirect genetic effects
Several indirect (paternal and/or maternal) genetic effects were also
evident. Supplementary Data 7 reports standardized and unstandar-
dized coefficients and inferential statistics for all PGS models. For
example, maternal indirect effects of polygenic-P were evident in the
general domain (beta = 0.017, se = 0.004, p = 3.33e-4, std beta = 0.041),
as well as parental (either maternal, paternal or both) indirect genetic
effects across most specific domains, with the exception of the inat-
tention and anxiety domains. In contrast, for example, no parental
effects of the ADHD PGS were observed on any outcome. Maternal
indirect genetic effects on P were also observed for the chronic pain
PGS (beta = 0.016, se = 0.005, p = 1.39e-3, std beta = 0.037). Similarly,
parental indirect effects on the general domain P were observed for
theneuroticismandautismPGS, notably in the absenceof evidence for

direct genetic effects. Indirect genetic contributions to a number of
specific domains were observed across all these PGS (Fig. 2 and Sup-
plementary Data 7).

Polygenic score contributions across domains
Figure 3 (top panel) shows a comparison of standardized regression
coefficients between the conditional and unconditionalmodels for the
offspring PGS. The figure shows that the strongest polygenic predictor
of childhood emotional and behavioural difficulties across all domains
was ADHD PGS. Notably, an exception to this trend was the anxiety
domain, for which the neuroticism PGS was the strongest predictor.
Polygenic-P, alongwith depression and chronic pain PGS also emerged
as consistent predictors across the board. By contrast, for parental
indirect effects, the strongest predictors tended to be the PGS for
autism, polygenic-P, and neuroticism, albeit with a stronger signal
overall for the maternal effects compared to the paternal effects
(Supplementary Fig. S5). In addition, a general trend to attenuation in
conditionalmodels (i.e., most points sitting below the diagonal) canbe
observed across PGS traits, with the conditional models typically
yielding lower (shrunk) standardized estimates than the uncondi-
tional model.

Effect size shrinkage
Effect size estimates of parent and offspring PGS are expected to differ
between conditional and unconditional models (Supplementary
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Fig. 2 | Parent-offspring PGS effects on general and specific emotional and
behavioural difficulties domains. Effect sizes and confidence intervals for con-
ditionalmodels considering parent and offspring polygenic scores (PGS) effects on
the general (P) and specific emotional and behavioural difficulty domains. Sample
size N = 14,959. Point estimates represent beta coefficients and error bars are 95%

CIs. ADHD Attention-deficit/hyperactivity disorder, AUT Autism spectrum dis-
order, DEP Broad depression, CPAIN Chronic pain, polygenic-P first unrotated
principal component of all neuropsychiatric PGS. Facets: ODDOppositional defiant
disorder, CND Conduct disorder, HYP Hyperactivity, INA Inattention, DEP
Depression, ANX Anxiety. *Survives correction for multiple testing (“Methods”).
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Data 7–9) because direct and indirect paths of genetic transmission
can be reciprocally confounded. For example, demographic phe-
nomena, captured by indirect genetic effects (proxied by parental PGS
effects), can contribute to PGS–phenotype associations in the off-
spring. Vice versa, when not adjusted, parental PGS effects on off-
spring phenotypes will also capture genetic transmission, not only
putative genetic nurture effects. We can quantify the extent to which

this is the case by considering the relative shrinkage of parameter
estimates from unconditional to conditional PGSmodels (“Methods”).
Figure 3 (bottom panel) depicts shrinkage of offspring PGS effects, for
those models favoured over the null model (“Methods” section and
Supplementary Data 10; PC1 PGS not shown for clarity).

For example, virtually no shrinkage was observed for the
ADHD PGS across domains, indicating that only direct genetic
effects were contributing to this relationship. Conversely, the
effects of the Autism PGS underwent substantial shrinkage sug-
gesting either indirect genetic effects or demographic confound-
ing at play. With the exception of the ADHD PGS, virtually all
offspring PGS effects underwent shrinkage. Taking for example the
polygenic-P PGS, shrinkage was evident across all specific domains
(range = 25–38%).

Polygenic risk transmission to symptoms of emotional and
behavioural difficulties
We then proceeded to test formally whether polygenic contributions
of neuropsychiatric-related risk across symptoms of emotional and
behavioural difficulties were likely to be mediated by the general or
specific domains, or whether effects were heterogeneous across
symptoms within domains. Our analytical strategy is detailed in the
“Methods” and summarized in Box 2. Briefly, for each PGS model
favoured over the null model, we statistically compared a restrictive
common pathway model to a more flexible specific pathways
model25,26, at both levels of the hierarchy (i.e., first- and second-order
level domains). The more restrictive model (henceforth ‘P-mediated’
model) assumes that PGS effects were uniquely mediated by the gen-
eral domain ‘P’. This was compared to a less restrictive model in which
effects were freely estimated over specific dimensions (the ‘domain-
heterogeneity’ model). Finally, this latter model was compared to a

BOX 2

Summary of the analytical
procedure

for each PGS:
1. fit null model
2. fit alternative models (p-mediated and domain-heterogeneity

models)

3. compare models: χ2diff (null, p-mediated, domain-heterogeneity)
4. if (fit p-mediated > fit null model) then
5. statistical inference (p-mediated and domain-heterogeneity

models)
6. if (fit domain-heterogeneity > fit p-mediated > fit null) then
7. for each specific factor in the domain-heterogeneitymodel:
8. fit symptom-heterogeneity model

9. compare models: χ2diff (domain-heterogeneity, symptom-
heterogeneity).

10. if (fit symptom-heterogeneity >fit domain-heterogeneity) then
11. statistical inference (symptom-heterogeneity model)

Fig. 3 | Polygenic scores contributions across emotional and behavioural dif-
ficulties domains. a Comparison of standardized regression coefficients for off-
spring PGS effects from conditional to unconditional models, showing the relative
importance of PGS contributions across emotional and behavioural difficulties.
Faded: does not survive correction formultiple testing or not selected over the null
model. b Shrinkage of standardized effects for the offspring PGS from uncondi-
tional (i.e. green) to conditional (i.e. red) models across emotional and behavioural
difficulties domains, restricted to models favoured over the null model (PC1 PGS
not shown for clarity). Estimates are plotted in descending order of shrinkage.

Note: Shrinkage estimates in (b) were obtained from standardized estimates for the
child PGS in the conditional and unconditional models shown in panel a (see
“Methods”). ADHD Attention-deficit/hyperactivity disorder, AUT Autism spectrum
disorder, BIP Bipolar disorder, SCZ Schizophrenia, AN Anorexia nervosa, ANX
Anxiety, PTSD Post-traumatic stress disorder, DEP Broad depression, CPAIN
Chronic pain, PC1 first unrotated principal component of all neuropsychiatric (and
related) PGS, Polygenic-P first unrotated principal component of all neu-
ropsychiatric PGS. Facets: ODD Oppositional defiant disorder, CND Conduct dis-
order, HYP Hyperactivity, INA Inattention, DEP Depression, ANX Anxiety.

Article https://doi.org/10.1038/s41467-025-57694-w

Nature Communications |         (2025) 16:2674 6

www.nature.com/naturecommunications


model allowing for PGS effects directly over symptom indicators
(‘symptom-heterogeneity’ model), for each specific domain in turn.

Figure 4 shows results for the heterogeneity analyses. For
instance, the P-mediatedmodel was favoured for the polygenic-P PGS,
indicating that PGS contributions for general neuropsychiatric risk
over emotional and behavioural difficulties domains were consistent
with mediation by the general domain. The P-mediated model was
favoured also for depression and autism PGS. One important distinc-
tion, however, is that while for the polygenic-P PGS parental and off-
spring effects were both observed, parental depression PGS effects
were overall near 0 and not statistically significant. This suggests that
the mediated effects of the depression PGS over the specific domains
were drivenmainlybydirectgenetic effects. Conversely, for the autism
PGS, only parental PGS contributions were evident across domains.

As a comparison, for the ADHD PGS a more nuanced picture
emerged: The domain-heterogeneity model was favoured for the
conduct, inattention and depression domains, suggesting that ADHD
PGS effects over symptoms for these traits were likely to be mediated
by their corresponding specific domains (i.e. scale-level factors). In
other words, there was no symptom heterogeneity at play in terms of
(direct) PGS effects. However, for oppositional-defiant and hyper-
activity domains, the symptom-heterogeneity model was favoured,
suggesting heterogeneity in direct effects over symptoms. In Supple-
mentary Material, we discuss specific examples of symptom and
domain-level heterogeneity (Supplementary Data 12 and 13 and
Figs. S6–S9).

Discussion
We investigated direct and indirect polygenic risk contributions of
neuropsychiatric-related traits to general and specific domains of
childhood emotional and behavioural difficulties. Three main findings
emerged. First, we observed that, when adjusting for parental poly-
genic scores, the offspring polygenic score effects were generally
smaller thanwhat would be naively obtained fromunadjusted analyses
in singletons. Second, parental indirect genetic effects, reflecting
polygenic risk for neuropsychiatric traits, were evident across general
and specific domains of emotional and behavioural difficulties. Third,
overall, indirect genetic contributions tended to bemediated either by
the general domain or by the specific domains, while direct genetic
effects were also found to contribute heterogeneously across symp-
toms within specific domains.

An important result for PGS work in developmental psychology
regards the decrease, or shrinkage, in effect sizes of PGS–phenotypes
associations that is observed when conditioning on parental PGS,
hence adjusting for indirect genetic effects. While this phenomenon is
well documented for cognitive-related traits11,27 our results indicate it
goes beyond the cognitive domain. For example, our results for the
depression PGS provide converging evidence with previous GWAS
work28. However, we also show that shrinkage depends on the target
phenotype of interest, suggesting a more nuanced picture than gen-
eralized confounding. For example, the neuroticismPGS effects on the
depression domain exhibited substantial shrinkage, but this was not
the case with the anxiety domain, where no shrinkage was observed.

Fig. 4 |Heterogeneity test results acrosspolygenic scoremodels.Facets contour
and letters indicate the favoured model: a/Green = P-mediated model, b/orange =
domain-heterogeneity, c/dashed-black = symptom heterogeneity model. ADHD
Attention-deficit/hyperactivity disorder, AUT Autism spectrum disorder, DEP

Broad depression, CPAIN Chronic pain, Polygenic-p first unrotated principal com-
ponent of all neuropsychiatric PGS. Facets: ODD Oppositional defiant disorder,
CND Conduct disorder, HYP Hyperactivity, INA Inattention, DEP Depression, ANX
Anxiety.
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This suggests that while environmentally mediated effects related to
neuroticism may play a role in childhood depression, the main reason
for the association with childhood anxiety is genetic overlap.

Our findings triangulate evidence on genetic nurture effects from
previous work using different methodologies in the MoBa sample. For
example, 7showed genetic nurture effects on depressive symptoms
(but not anxiety), while29 foundonly suggestive evidence in this regard.
Here, we find evidence that parental risk is linked, albeit not strongly,
with both anxiety and depression symptomatology in childhood.
Indirect genetic effects on anxiety were driven by parental genetic risk
for depression, while indirect genetic effects on depression were dri-
ven by neuroticism, chronic pain, general polygenic neuropsychiatric
risk (polygenic-P) and, to a lesser extent, by depression itself.

Recent work using non-transmitted polygenic scores for neu-
ropsychiatric conditions has found limited evidence for indirect
genetic effects on emotional problems across development30. The
discrepancy in findings between our study and Shakeshaft et al.’s study
maybedue to differences in power, arising fromdifferent sample sizes
and designs. We note that the sample size for Shakeshaft et al. was
about half the sample size of the present study, potentially limiting its
ability to detect genetic nurture effects (consistent with power calcu-
lations presented in the Supplementary Material, page 4). In addition,
the trio design that we employed is more powerful than the non-
transmitted approach to detect indirect genetic effects31.

Other converging evidence emerging from our analyses involved
indirect genetic effects of the neuroticism PGS on the opposition-
defiant symptom domain. Evidence employing different methodolo-
gies, such as variance decomposition-based methods, is starting to
accumulate implying genetic nurture effects over the externalizing
spectrum32,33. Interestingly, however, while bothmaternal and paternal
indirect genetic effects were evident when considering neuroticism
and chronic pain contributions to the depression domain, only
maternal genetic effects were evident for neuroticism and ODD. This
might suggest a form of rater bias effect whereby mothers with a
higher genetic predisposition to neuroticism are also more likely to
report more child oppositional and defiant behaviour.

We previously did notfind evidence for genetic nurture effects on
the externalizing spectrum using similar methodology in the MoBa
sample12,13, except for neuroticism on ADHD. Conversely, here, we
observed parental indirect genetic effects of autism and general neu-
ropsychiatric risk on the conduct domain. Furthermore, we find aut-
ism, neuroticism, chronic pain and general neuropsychiatric risk PGS
effects on the hyperactivity and inattention domains. On the one hand,
the PGS for autism, chronic pain and general neuropsychiatric risk
were not previously investigated in this context. On the other, it might
be that separating between domain subdimensions, such as inatten-
tion and hyperactivity, within a multivariate setting is a useful level of
analysis in this regard. It is of note that for several models involving
polygenic predispositions for chronic pain, neuroticism and autism,
only parental contributions were evident—suggesting either family-
wide environmental processes as a main route for transmission, or
more unspecific confounding driving this relationship. Future studies
should disentangle these alternative hypotheses.

Finally, we provide an indication of how polygenic scores may
differentially link to behavioural and emotional symptoms. We found
that the ADHD PGS was not a specific predictor restricted to related
domains (hyperactivity and inattention), but was the strongest pre-
dictor across emotional and behavioural difficulties including general
and specific domains. While comparisons of PGS effect sizes is ham-
pered by considerations of GWAS power, we note that the ADHD
GWAS was not the most powered across those considered. The asso-
ciation patterns of other PGS, including chronic pain, depression and
polygenic-P were also largely unspecific (i.e. not unique to any one
domain), except for the anxiety dimension. These results are con-
sistent with previous recounts in independent child cohorts22–24.

We cannot exclude that these results may partly arise due to
cross-trait assortative mating34, and/or the phenotypic distance
between child phenotypes and some of the adult GWAS employed
here. These considerations may impact the level of specificity of PGS
and explain the observed attenuation of PGS effects.However, we note
that shrinkagewas not observed selectively for adult-basedGWAS (e.g.
depression and neuroticism) compared to child-based GWAS (e.g.
ADHD and ASD). After conditioning on the parental PGS, we observed
that the PGS for ADHD, neuroticism and chronic pain was associated
heterogeneously across specific domains and symptoms, suggesting
some degree of specificity.

Such specificity of direct and indirect effects can have practical
implications for research and intervention strategies. Considering
direct genetic effects, we show that focusing on the symptom level in
addition to the sum score level can provide novel insights. For exam-
ple, our findings indicate that polygenic predisposition for ADHD
relates more to motor rather than verbal impulsivity items (Supple-
mentaryMaterial). By extension, thismaypoint to different aetiologies
for subdimensions of hyperactivity-impulsivity in childhood ADHD
having to do with ‘motion’ versus ‘speech’. Distinguishing these sub-
dimensions could yield further nuance in child developmental psy-
chology work as well as genomic studies35,36. Considering indirect
genetic effects, specificity might point to interventions aimed at par-
ental characteristics that are likely to have an impact on particular
symptom domains in their offspring. As an example, paternal and
maternal indirect effects of neuroticism were more important for
depression and inattention (Fig. S9), suggesting that interventions
aimed at reducing neuroticism in the parents may have an impact on
childhood symptoms of depression and inattention, but not necessa-
rily onother symptomdomains. Conversely, thematernal and paternal
indirect effects of the polygenic-P PGS were found to be mediated by
the general domain, which can be considered as an index of comor-
bidity (as shown empirically elsewhere, Fried et al.37). This suggests
that indirect genetic effects (i.e., putative environmental, family-wide
processes) related to general parental psychopathology may impact
the comorbidity of symptoms in childhood, and may thus be a target
of preventive interventions and improve prognosis across a range of
emotional and behavioural difficulties.

The results of the present work need to be considered in light of a
number of caveats. First, GWAS of behavioural traits, based on scale-
level measurements, can also be considered as (implicit) common
pathway models (with equal indicator weights). That is, GWAS of sum
scores can be likened to testing the hypothesis that an SNP is influ-
encing all indicators via the same route (namely the scale-level factor)
andwith all indicators equally contributing to the factor38,39. Symptom-
level PGS obtained from item-level GWAS (e.g. ref. 40) are therefore
bound to better capture specificity, and might be promising avenues
to fine-tune the search for heterogeneous pathways of risk, whether
for direct or indirect genetic effects. Second, the fact that several PGS
were not favoured over the null model, in conditional analyses, does
not mean that they are not worth investigating further. We should
expect that at larger sample sizes even more modest effects will be
uncovered. Third, replicationof these findings acrossdifferent raters is
essential. As mentioned, some of the indirect genetic effects we
detected, for example, parental PGS effects of chronic pain on the
hyperactivity domain, might have arisen because of rater bias. For
example, mothers with a higher genetic predisposition to chronic pain
might be more likely to perceive their offspring as hyperactive and in
turn rate their offspring’s hyperactivity higher. Relatedly, the child-
parent agreement on internalizing symptoms for the SCARED ques-
tionnaire is low41 and this may have impacted our results for the
anxiety domain.

Future studies should also examine a broader range of neu-
ropsychiatric outcome measures. We found that autism PGS showed
only indirect, and not direct, genetic effects on emotional and
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behavioural difficulties. However, there may be more direct genetic
effects on core autistic traits such as atypical social communication
and restricted and repetitive behaviours. Further, replication of all
findings in independent cohorts and validation with different designs
(e.g. ref. 5), including causal inference methods such as within-family
Mendelian randomisation, is needed.

Furthermore, a number of caveats relating to genetic nurture and
specifically to the models we employed here should be addressed in
future research. First, the phenotypic definition in GWAS is of key
importance. PGS will capture (direct and indirect) average genetic
effects on a phenotype reflecting a specific developmental period and
milieu. In the context of genetic nurture, the implications of mapping
adult-derived PGS on childhood symptomatology are not straightfor-
ward. For example, adult-basedGWASofpsychiatric traits is unlikely to
capture the full complexities of genetic influences on childhood phe-
notypes across development42 (e.g. early vs late-onset ADHD). How-
ever, GWAS of child phenotypes is unlikely to serve as good proxies of
parental risk factors relevant to those child phenotypes (e.g. parental
neuroticism). As such, GWAS of relevant adult phenotypes may be
more likely to appropriately capture genetic nurture effects (e.g. adult
depression GWAS -> parental depression -> parenting -> offspring
outcomes). FutureGWASwork leveragingwithin-family designs across
the developmental spectrum could improve our understanding in this
regard.

Second, rare variation, and in particular the interplay between
rare and common variation43, may play an important role in the risk
transmission of psychiatric traits. Asmoredevelopmental cohortswith
sequencing data are becoming available this will be an important
avenue to be explored.

Third, assortative mating may account for a substantial propor-
tion of indirect effects detected here and is something that we cannot
exclude based on a two-generation model alone4. A three-generation
model, or other methods based on different assumptions and designs
that can further disentangle parental assortment from indirect genetic
effects due to genetic nurture will be a key avenue for future work in
this area4,5,44,45. Finally, future work investigating the degree to which
these results replicate across the genetic ancestry spectrum and in
diverse social settings is warranted.

In conclusion, by examining family-level genomic data we pro-
vided an account of how neuropsychiatric-related polygenic risk con-
tributes to childhood emotional and behavioural difficulties via direct
and indirect genetic effects. Overall, we observed evidence consistent
with a putative environmental route to domain-general symptoma-
tology, while also demonstrating domain-specific direct and indirect
neuropsychiatric-related genetic contributions. An important aim for
future studieswill be to triangulate this evidencewith different designs
and independent samples. Thegoalwill be to uncoverwhether indirect
genetic effects detected are in fact attributable to genetic nurture
processes, and if so, which specific “nurturing” environments are
implicated.

Methods
Ethics
Informed consent was obtained from all study participants. The
establishment of MoBa and initial data collection was based on a
license from theNorwegianData ProtectionAgency and approval from
The Regional Committees forMedical and Health Research Ethics. The
MoBa cohort is currently regulated by the Norwegian Health Registry
Act. The current study was approved by The Regional Committees for
Medical and Health Research Ethics (ethical approval: 2016/1702).

Sample
We analyse data from the ‘The Norwegian Mother, Father and Child
Cohort Study (MoBa)’ a population-based pregnancy cohort study
conductedby theNorwegian Institute of PublicHealth46,47. Participants

were recruited from all over Norway from 1999 to 2008. The women
consented to participation in 41% of the pregnancies. The cohort
includes approximately 114.500 children, 95.200 mothers and 75.200
fathers. The current study is based on version 12 of the quality-assured
data files released for research in January 2019.

A description of the cohort and theQCperformedon genetic data
is available elsewhere48. Here we focus on a subset of the total cohort
comprising complete trios from unrelated families, and further
restricted to one child per family for a total of 30,048 families. Selec-
tion of individuals among pairs of siblings within families was per-
formed by prioritizing based on phenotypic availability across the six
emotional and behavioural domains considered in analyses and
described below. That is, within genotyped families with more than
one offspring, only one at random was retained, unless phenotypic
data was available for only one person in which case that child was
prioritized over the others. This yielded a total of 14,959 genotyped
family trios with at least one phenotypic observation available across
emotional and behavioural difficulties when children were aged 8
years. Of these, 51% of children were females. Figure 5 is a flowchart of
the study sample size.

Measures
Emotional and behavioural difficulties. We used maternal reports
fromquestionnaire data collectedwhen childrenwere aged 8 years, the
first MoBa wave with an extensive range of measures for emotional and
behavioural difficulties. Specifically, we used item-level data measuring
symptoms of depression (short mood and feelings questionnaire49; 13
items), anxiety (screen for child anxiety-related disorders50; 5 items),
conduct problems (18 items from the 31 items rating scale for disruptive
behaviour disorders [RS-DBD]51), oppositional defiant disorder (RS-
DBD; 8 items), and hyperactivity (RS-DBD; 9 items) and Inattention (RS-
DBD; 9 items). Internal consistency for all measures based on items
included in the analytical sample is reported in Supplementary Data 11.
Supplementary Data 1 reports item frequencies across all measures.

Polygenic scores
PGS were calculated with LDpred252, a Bayesian method to derive
polygenic scores using information on the genetic architecture of a
trait, and on Linkage Disequilibrium (LD) obtained from a reference
panel. To compute PGS, recommendedquality control guidelineswere
followed and variants included were restricted to an extended set of
HapMap3 variants53. UK Biobank was used as a reference LD panel in
PGS calculations using precomputed LD matrices provided in ref. 53.
PGSwere generated by using the ‘auto’ option.We generated PGS for a
selection of GWAS summary statistics for neuropsychiatric traits
including Autism spectrum disorder54, Bipolar disorder55,
Schizophrenia56, Attention -deficit/hyperactivity disorder (ADHD)57,
Anorexia nervosa58, Anxiety59, Post-traumatic stress disorder (PTSD) 60,
Broad depression61, as well as neuropsychiatric-related traits including
Neuroticism62, Insomnia63, Chronic pain64, for a total of 11 PGS. We
made this selection in order to cover the phenotypic domains involved
in analyses as well as neuropsychiatric-related traits previously found
to be associated with general and specific emotional and behavioural
domains in independent cohorts22,24, while being parsimonious in PGS
inclusion to limit the burden of multiple testing. In addition, we cre-
ated two multivariate PGS from the first unrotated principal compo-
nent of the neuropsychiatric PGS (‘polygenic-p’) and from all the
scores together (PC1) (Supplementary Data 4). Finally, we generated a
PGS based on a GWAS of hair colour (red) in UKB as a negative control
in our analyses65. Supplementary Data 14 reports information on the
GWAS summary statistics employed in analyses.

Analyses
Wemodel item-level data from these measures in hierarchical models
of psychopathology. We fit a second-order and a symmetric bifactor
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model (our ‘base’ models), where items of different emotional and
behavioural difficulties scales are loaded on specific latent factors,
reflecting their corresponding scales. We then compared model fit
using standard model fit indices including CFI, SRMR, RMSEA and chi-
square difference test. We examined parameter estimates and model
fit indices carrying forward in analyses the more suitable model to the
data at hand (Supplementary Material for further discussion)66.

Importantly, we do not explicitly investigate a particular hier-
archical taxonomy either data- or theory-driven (e.g. refs. 67,68), for
example, distinguishing between internalizing and externalizing
domains. Instead, we focus on how well specific domains, reflecting
scale-level measurements of behavioural and emotional difficulties,
capture polygenic neuropsychiatric-related risk on corresponding
symptomatology. Additionally, we test how well a general behavioural
and emotional domain, consistent with a common cause model, cap-
tures polygenic effects across specific domains and their symptom
indicators.

Power simulations
We performed power simulations for a multiple indicators multiple
causes (MIMIC) version of the more suitable base hierarchical model.
We used weights from the base model to simulate data and run power
simulations based on a combination of three data-generating scenarios
involving joint effects of parental and offspring polygenic scores on
either the general (P) or the specific emotional and behavioural
domains (Supplementary Material). Each of these combinations was
tested across fixed parameters for the child and mother PGS (beta =
0.04, and beta =0.03 respectively) and three different parameters for
the father polygenic score (betas 0.03, 0.01, and 0.001), holding con-
stant sample size at N= 15,000 (our maximum sample size).

Modelling strategy
For each PGS considered, we fit a set of structural equation models
(SEMs) (depicted in Fig. 1) including a ‘null’ model where joint PGS
effects for parents and offspring traits over the general domain were
fixed to 0 (‘null model’, panel a); and two alternative models where
joint parent-offspring PGS effects over either the common factor (‘p-
mediated’, panel b), or the specific factors (‘domain-heterogeneity’,
panel c)were freely estimated. Finally, for eachof the specificdomains,
we estimated amodelwhere PGSeffects on itemswereallowed (i.e. not
mediated by general or specific domains; ‘symptom-heterogeneity’,
panel d). Box 2 shows a step-by-step summary of the procedure.

We then performed a model comparison between null,
p-mediated, and domain-heterogeneity models, using a chi-square dif-
ference test (χ2dif f ), as summarised in Box 2. In a similar fashion to

ref. 25 this test provided an indication of whether a common or
independent pathway model better fitted the data. In practice, we
tested whether direct and indirect PGS effects on behavioural and
emotional symptoms were more likely to be mediated by either a
general dimension, common across all symptom domains, or a
domain-specific dimension (e.g. depression domain). Conversely, if
the symptom-heterogeneity model was favoured such effects were
deemed as heterogeneous across items within domains. All nested
comparisons were adjusted for multiple testing, alpha =0.05/N (N =
nested comparisons). If the null model was favoured, no further
inference was performed (i.e. fit p-mediated < fit null model; although
we report results for all models tested in Supplementary Data 7–9). If
the alternative p-mediated model was not rejected, joint PGS effects
over general and specific domains were adjusted for multiple testing
(i.e. for all fit p-mediated > fit null models). P-value adjustment was
performed as follows: first, for every offspring polygenic score for
which the P-mediated model was favoured over the null model, we
tested the hypothesis of direct genetic transmission (i.e. adjusting for
indirect effects). To this end, we performed an FDR
Benjamini–Hochberg procedure across Ntests =N PGS × 7, accounting
for all tests performed across the general factor + 6 specific factors.
Second, we tested the hypothesis that maternal or paternal indirect
effects were present on any given factor, for any given score, condi-
tional on the child polygenic score, performing an FDR
Benjamini–Hochberg procedure for a total of Ntests =N PGS× 7 × 2 (i.e.
further accounting for the fact that there are 2 ways to detect indirect
effects, either via the maternal or the paternal PGS). To compare how
parent-offspring PGS contributions differed in conditional models
compared to unconditional models, we repeated these analyses
separately for the offspring PGS (i.e. not adjusting for parental PGS),
and for parental PGS (i.e. including both mother and father PGS, but
not the offspring PGS in the models). Again, analyses were corrected
for multiple testing performing an FDR Benjamini–Hochberg proce-
dure across Ntests =N PGS × 7, for the child models, and Ntests =N
PGS × 7 × 2 for the parent models. Box 2 is a step-by-step summary of
the analytical procedure. To quantify the level of shrinkage for parent-
offspring PGS effects between unconditional and conditional models
we calculated the percentage decrease of standardized beta coeffi-
cients between these models, i.e. (1 − (abs(conditional beta)/abs(un-
conditional beta))) × sign(unconditional Beta) × 100.

All polygenic scores were standardized and adjusted for 20
genetic principal components, genotyping centre, chip and batch, as
well as sex and year of birth, and residuals were used in subsequent
analyses. Sex and year of birth were also included in all models tested
as regressors of the emotional and behavioural items. Biological sex

Fig. 5 | Study flow-chart. Diagram of the study sample selection.
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wasderived from chromosomal data. Analyses were not run separately
by sex because of power considerations. Analyses were conducted in R
(version 3.5.0), RStudio (version 1.4.1717) and on the Colossus HPC
Cluster, SEM models were fitted using Lavaan69 (version 0.6-8). All
models were fit using a robust weighted least square (WLS) estimator
(WSLMV: diagonally weighted least square estimation with robust
standard errors, and mean and variance adjusted test statistics), using
pairwise deletion for missing data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The consent given by the participants does not open for storage of
data on an individual level in repositories or journals. Researchers who
want access to data sets for replication should submit an application to
datatilgang@fhi.no. Access to data sets requires approval from The
Regional Committee forMedical andHealth ResearchEthics inNorway
and an agreement with MoBa.

Code availability
No custom computer codewas used in the study. The software used in
the data preparation and analysis were R 3.5, Lavaan 0.6–9, and
LDpred2 (bigsnpr70 1.12.16). Code for data preparation and analyses is
publicly available at https://github.com/AndreAllegrini/IRISK-p71.
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Intergenerational transmission of polygenic
predisposition for neuropsychiatric traits on
emotional and behavioural difficulties in
childhood

A. G. Allegrini 1,2 , L. J. Hannigan 3,4,5, L. Frach 1,6, W. Barkhuizen 1,
J. R. Baldwin 1,2, O. A. Andreassen 7, D. Bragantini3,4, L. Hegemann3,4,8,
A. Havdahl3,4,9,10 & J-B. Pingault 1,2,10

Childhood emotional and behavioural difficulties tend to co-occur and often
precede diagnosed neuropsychiatric conditions. Identifying shared and spe-
cific risk factors for early-lifemental health difficulties is therefore essential for
prevention strategies. Here, we examine how parental risk factors shape their
offspring’s emotional and behavioural symptoms (e.g. feelings of anxiety, and
restlessness) using data from 14,959 genotyped family trios from the Norwe-
gian Mother, Father and Child Cohort Study (MoBa). We model maternal
reports of emotional and behavioural symptoms, organizing them into general
and specific domains. We then investigate the direct (genetically transmitted)
and indirect (environmentally mediated) contributions of parental polygenic
risk for neuropsychiatric-related traits and whether these are shared across
symptoms. We observe evidence consistent with an environmental route to
general symptomatology beyond genetic transmission, while also demon-
strating domain-specific direct and indirect genetic contributions. These
findings improve our understanding of early risk pathways that can be tar-
geted in preventive interventions aiming to interrupt the intergenerational
cycle of risk transmission.

Emotional and behavioural difficulties onset during childhood or
adolescence for most individuals1. In turn, symptoms of emotional
and behavioural difficulties that manifest in early life may be har-
bingers of later-onset psychiatric disorders. An aetiological
understanding of emotional and behavioural difficulties is thus

central to advancing our understanding of how neuropsychiatric
conditions develop.

Parental factors, particularly parental neuropsychiatric condi-
tions, are considered important early risk factors contributing to
childhood neuropsychiatric symptomatology2. The transmission of
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neuropsychiatric risk across generations reflects a complex interplay
between genetic and environmental risks. We can specify two broad
types of intergenerational effects, related to so-called ‘direct’ and
‘indirect’ genetic pathways of transmission within families. First, direct
genetic effects originate in an individual’s genome. They follow from
the genetic transmission of risk, whereby parents transmit their
genetic predispositions to their offspring, which in turn relate to
specific individual’s phenotypes (e.g. genetic variants contributing to
anxiety are transmitted to the offspring and, then, directly contribute
to offspring anxiety). Second, indirect genetic effects originate in the
parent genome, but are independent of the child genotype, and are
thought to be accounted for by the family environment (e.g. genetic
variants, even when non-transmitted to the offspring, can affect par-
ental depression, which may in turn affect parenting style and, thus,
indirectly, child anxiety).

The availability of large family-based genotyped cohorts allows us
to untangle direct and indirect genetic effects. This can be done by
jointly modelling parent and offspring genetic predispositions, as
indexed by polygenic scores (PGS). PGS are predictors of the genetic
predisposition of an individual for traits of interest, e.g. the polygenic
score for depression. In this context, an investigation of how
neuropsychiatric-related predispositions are associated with child-
hood emotional and behavioural difficulties can be especially useful in
at least two ways. First, we can obtain unbiased estimates of ‘direct’
polygenic risk contributions. Having unbiased estimates of direct
effects as a reference can be informative formost studies that typically
only comprise singletons and thus cannot take advantage of designs
relying on family structure. In such studies of singletons, estimates of
associations between PGSandoutcomes canbe inflated, or completely
accounted for, by indirect genetic effects3. Indirect genetic effects are
generally understood as effects that originate in another individual’s
genome—typically family members, like parents in the present study—
and aremediated via environmental processes independent of genetic
transmission. The parental genome thus indirectly impacts offspring
outcomes. Indirect genetic effects are often referred to as genetic
nurture due to the hypothesized role of nurturing in this transmission
pathway (e.g. parental genetics shapes nurturing practices within the
family like parenting, which in turn impacts childhood outcomes). In
addition to genetic nurture per se, indirect genetic effects can also
reflect other genuine indirect effects that do not directly involve
within-family nurturing (e.g. parental income affects the choice of
neighbourhood or school which impacts child outcomes). Impor-
tantly, however, estimates of indirect effects can also reflect biases
from genetic and environmental confounding3, including assortative
mating4 and social stratification5. Irrespective of what they are com-
prised of, indirect genetic effects will bias between-family estimates of
genotype–phenotype associations6, but can be adjusted for in within-
family analyses to recover direct genetic effects, such as in the trio
design via estimation of PGS-phenotype effects conditional on the
parental PGS.

Second, jointly modelling parent-offspring PGS in trio models
allows us to gain insights into specific risk factors responsible for
indirect genetic contributions to child emotional and behavioural
difficulties. For example, indirect genetic contributions to child
depression may be explained by parental risk factors beyond depres-
sion, such as parental anxiety and neuroticism, suggesting specific
environmental risk factors for child depression7,8.

Most of the polygenic score work in this area has been spear-
headed by studies investigating educational outcomes9,10, where
indirect genetic effects were found to account for about half the size of
the PGS effect on education11. More recentlymixed evidence is starting
to accumulate in childhood psychiatry12–15. Here, we leverage genomic
data from 14,959 family trios to investigate shared vs specific effects of
parental neuropsychiatric-related risk on emotional and behavioural
difficulties in childhood.

Emotional and behavioural difficulties co-occur in complex ways
throughout development16,17, highlighting the importance of investi-
gating shared and specific predictors. In this context, the latent vari-
able modelling framework allows for the investigation of shared
variation across emotional and behavioural difficulties. Within this
framework, the co-occurrence of symptoms can be organized in
hierarchical structures where shared variance across observed vari-
ables (such as observed difficulties) is captured by latent dimensions
reflecting phenotypic domains. Domains are more specific at lower
levels (e.g. a ‘depression’ domain), and more general at higher levels
(e.g. an ‘internalizing’ domain, reflecting the common variance across,
e.g., depression and anxiety). Typically, a common feature of hier-
archical models is that variance shared across all domains, or the
entirety of observed traits, is captured by a unique general domain,
commonly referred to as ‘the general psychopathology factor’ (or ‘p-
factor'18). Within a common cause framework, this general domain is
purported to explain why neuropsychiatric conditions and symptoms
tend to co-occur.

Every statistical model inherently makes assumptions about the
data and their structure. For example, different hierarchical models
imply distinct mechanisms through which higher-order domains are
linked to observed traits, such as emotional and behavioural
symptoms19. If taken at face value, a corollary of such models is that
risk factors, such as parental neuropsychiatric conditions, are assumed
to link to specific symptoms through broader domains. For example,
parental neuroticism could affect children’s general predisposition to
emotional and behavioural difficulties (p-factor) which, in turn,
impacts narrower domains such as depression, as well as specific
depression symptoms such as fatigue and lowmood [Box 1]. However,
risk factors may be unique to specific symptoms, or express hetero-
geneously at different levels of the hierarchy suggesting a more
nuanced picture (e.g. ref. 20). For example, risk factors for depression
do not consistently associate across depressive symptoms indicating
heterogeneity in this (latent) construct21. In this context, it is important
to investigate how risk factors relate to the building blocks of the
hierarchical structure of neuropsychiatric conditions. We can bring
this idea in the context of childhood emotional and behavioural diffi-
culties by examining how PGS for neuropsychiatric-related traits affect
different levels of the hierarchical structure, i.e. affecting specific
symptoms (e.g., easily distracted), specific domains (e.g., inattention),
or a unique general domain (p-factor).

Previous work has investigated how individual predispositions to
neuropsychiatric conditions, indexed by PGS for neuropsychiatric
(and related) traits, are associated with general and specific emotional
and behavioural difficulties in childhood. This body of research gen-
erally suggests largely transdiagnostic, non-specific effects22,23, albeit
with more nuance depending on the modelling strategy adopted and
the phenotypic domain tapped into by a given PGS24. A limitation of
this body of research is the reliance on samples of singletons. Here, we
implement family-based analyses using genotyped trios, enabling the
estimation of both direct and indirect genetic effects on specific versus
general domains of child emotional and behavioural difficulties, with
implications for interventions. For example, if parental predisposition
to depression shows specific links with child depressive symptoms,
treatment of parental depression may be likely to impact only child
depressive symptoms rather than emotional and behavioural difficul-
ties more generally.

In summary, we leverage data from family trios, using PGS to
investigate the intergenerational transmission of neuropsychiatric-
related predispositions. First, we examine the direct effects of chil-
dren’s polygenic neuropsychiatric-related predispositions on general
and specific emotional and behavioural domains (i.e. adjusted for
confounding by indirect genetic effects). Second, we examine parental
indirect genetic effects on general and specific emotional and beha-
vioural domains. Finally, we test whether direct and indirect genetic
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effects on child emotional and behavioural difficulties are general,
domain-specific, or symptom-specific in nature.

Results
The sample comprised 14,959 genotyped unrelated family trios from
Norway, forwhich at least onephenotypic observationmeasuredwhen

children were aged 8 years was available (“Methods”). As a baseline for
our analyses, we fit a second-order hierarchical model to item-level
data on emotional and behavioural difficulties, specifying domains
corresponding to each of the six scales from which items originated
(top panel Fig. 1). These six symptom scales comprisedmaternal-rated
measures of children’s depression and anxiety symptoms, conduct

BOX 1

Relationship between risk factors and symptoms of behavioural and
emotional difficulties

� 1 � 1 � 1 � 1 � 1

s1 s2 s3 s4 s5

Risk

DEP

a

� 1 � 0.5 � 0.7 � 0.6 � 0.4

s1 s2 s3 s4 s5

Risk

DEP

b

s1 s2 s3 s4 s5

Risk

DEP

c

s1 s2 s3

Depr

s4 s5 s6 s7 s8 s9

Risk

Insomn

P

DEP ANX ...

d

s1 s2 s3

Risk

s4 s5 s6 s7 s8 s9

Neuro

Insomn

P

DEP ANX ...

e

tired s2 s3

Depr

s4 s5 s6 s7 s8 s9

Neuro

Insomn

P

DEP ANX ...

f

DEP depression domain, ANX anxiety domain, P psychopathology
domain, S1–S9 symptoms 1–9, Neuro neuroticism, Depr depression,
Insomn insomnia.

Typically, risk factors for neuropsychiatric phenotypes, such as
emotional and behavioural difficulties, are assessed by testing their
associations with sum scores aggregating across a number of symp-
toms. This modelling framework is statistically equivalent to a struc-
tural equationmodel (SEM)where a latent construct, say depression, is
defined by symptom indicators all contributing the same to this latent
construct (panel a)38. When fitting this model, we are then implicitly
assuming that the effects of a given external risk factor (say maternal
depression) on different depressive symptoms are: 1. completely
mediated by this latent construct, which in turn is causing the symp-
toms and 2. the (mediated) effects of the risk factor on the symptoms
are equivalent. Depending on the construct of interest, this may be
implausible in practice for anygiven risk factor, as shownelsewhere for
depression21. For example, a particular risk factor may bemediated by
the latent construct depression and have different effects on different
symptoms. This can be represented by an SEMmodel where different
symptoms load differently on the latent construct (panel b). However,
risk factorsmay also be unique to particular symptoms. For example, a
predisposition to insomnia may affect fatigue, a symptom of depres-
sion, independently of depression (panel c). This relationship may
however be obscured if we only considered the latent construct

depression (or a sum score thereof) as our level of analysis. In this
context considering different levels of analysis is important to under-
stand shared vs unique contributions of a particular risk factor to
symptom clusters.

In a similar fashion, we can investigate how particular risk factors
relate to different domains of emotional and behavioural difficulties.
Panels ‘d–f’ depict the relationship between different symptom
domains as a hierarchical model where a general domain captures
shared variance across lower-level specific domains. Similar to the
case of depression, we can conceptualize external risk factors as
having shared effects across all symptomdomains of a given hierarchy
(panel d) or only across a subset of such domains (panel e). For
example, parental risk for neuroticism may affect different emotional
and behavioural domains, consistent with mediation by a general
psychopathologydomain (‘P’). Conversely, parental risk for depression
may only be relevant for a subset of domains, for example, depression
and anxiety, but not for others. In turn, this depression risk factor may
exert effects that generalize across all depressive symptoms. Con-
currently, risk factors for particular symptomsmight be at play (say an
individual predisposition to insomnia may affect fatigue as in the
example above). These effects are non-mutually exclusive, but are
likely to be obscured or confounded when using only sum scores or
just one level of analysis.
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problems, oppositional-defiant behaviours, hyperactivity and atten-
tion levels. Supplementary Data 1 reports frequency distributions for
the item-level data. In the baseline model, each symptom was allowed
to load onto one of six first-order domains corresponding to the six
scales of emotional and behavioural difficulties under study. Variance
in common across all first-order domains was further summarised by a
unique second-order general emotional and behavioural difficulties
domain (P). The baseline model fitted the data well (Supplementary
Data 2 and 3).

To assess power for our analyses under different scenarios, we
used weights from this model to simulate data and run power
simulations based on combinations of three data-generating
mechanisms (Supplementary Material). These involved joint
effects of PGS for parents and offspring over the domain-general
(P) or the domain-specific factors. Simulations showed that we had
at least 80% power to detect a small indirect genetic effect of
beta = 0.03 when the data-generating mechanism involved effects
completely mediated by either the general or specific domains
(Figs. S1–S3).

For our main analyses, we calculated polygenic scores for parents
and offspring to test their conditional effects over the general and
specific domains (conditional models, adjusted for all three PGS—
mother, father, offspring), and compared them to estimates obtained
frommodelswhere PGS effectswere considered separately for parents
and offspring (unconditional models, i.e., not adjusted for the PGS of
other family members). To this end, we generated PGS from genome-
wide association study (GWAS) summary statistics for eight psychiatric
and neurodevelopmental conditions: Attention-deficit hyperactivity
disorder (ADHD), Autism spectrum disorder (AUT), Bipolar disorder
(BIP), Schizophrenia (SCZ), Anorexia nervosa (AN), Anxiety (ANX),

Post-traumatic stress disorder (PTSD), and Broad depression (DEP).
Emotional liability, sleep problems and pain are common across many
of these conditions, and PGS for these traits have been previously
found to be associated with general and specific emotional and
behavioural domains in independent samples22,24. We thus also gen-
erated PGS for Neuroticism, Insomnia and Chronic pain (CPAIN). In
addition, we calculated two multivariate PGS obtained from the first
unrotated principal component of the neuropsychiatric PGS (‘poly-
genic-P’) and from all the scores together (‘PC1’ PGS) (Supplementary
Data 4 for the principal component analyses weights). These two dif-
ferent PCA PGS were generated as a sensitivity analysis to first test
whether polygenic-p contributed mainly to the general domain (P),
and second, whether a multivariate PGS extended beyond neu-
ropsychiatric traits alone made similar contributions. Finally, we gen-
erated a PGSbasedon aGWASof hair colour (red) as a negative control
in our analyses.

Direct genetic effects
Among the 14 conditionalmodels, each corresponding toonePGS (e.g.
DEP), 6 were favoured over a null model, suggesting that, together, the
PGS for the father, mother and offspring for the corresponding trait
were predictive of the outcomes, as captured by the general (P)
domain in the second-ordermodel. Figure2displays results for those6
models, i.e. beta estimates (unstandardized solution) and corre-
sponding CIs from conditional models (independent effects of parent-
offspringPGS). These includedADHD, autism,depression, neuroticism
and chronic pain PGSs, as well as both multivariate PGS (PC1 not
shown, Fig. S4 shows results across all PGS). Our negative control was
not favoured over the null model. Supplementary Data 5 and 6 report
results for all conditional and unconditional models.

Fig. 1 | Vignettes of models tested. a Second-order model fit to symptom-level
data across six emotional and behavioural difficulties scales. b Four models tested
for each polygenic score: null model (polygenic scores are not associated with any
outcome), P-mediated model, domain-heterogeneity model and symptom-

heterogeneity model. ODD oppositional-defiant domain, CND conduct domain,
HYP hyperactivity domain, INA inattention domain, DEP depression domain, ANX
anxiety domain.
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Direct genetic effects (i.e. child effects in conditional models
represented in Fig. 2) were observed across all emotional and beha-
vioural difficulties domains using PGS for polygenic-P (standardized
beta range = 0.043–0.075), depression (std beta = 0.028–0.062), and
ADHD (std beta = 0.071–0.131, with the exception of the anxiety
domain). Direct genetic effects with more specificity were also iden-
tified. For example, effects of PGS for chronic pain (std
beta = 0.041–0.058) were evident in all domains except on emotional
problems, and the neuroticism PGS associated only with anxiety (std
beta = 0.078) and oppositional-defiant domains (std beta = 0.034).

Indirect genetic effects
Several indirect (paternal and/or maternal) genetic effects were also
evident. Supplementary Data 7 reports standardized and unstandar-
dized coefficients and inferential statistics for all PGS models. For
example, maternal indirect effects of polygenic-P were evident in the
general domain (beta = 0.017, se = 0.004, p = 3.33e-4, std beta = 0.041),
as well as parental (either maternal, paternal or both) indirect genetic
effects across most specific domains, with the exception of the inat-
tention and anxiety domains. In contrast, for example, no parental
effects of the ADHD PGS were observed on any outcome. Maternal
indirect genetic effects on P were also observed for the chronic pain
PGS (beta = 0.016, se = 0.005, p = 1.39e-3, std beta = 0.037). Similarly,
parental indirect effects on the general domain P were observed for
theneuroticismandautismPGS, notably in the absenceof evidence for

direct genetic effects. Indirect genetic contributions to a number of
specific domains were observed across all these PGS (Fig. 2 and Sup-
plementary Data 7).

Polygenic score contributions across domains
Figure 3 (top panel) shows a comparison of standardized regression
coefficients between the conditional and unconditionalmodels for the
offspring PGS. The figure shows that the strongest polygenic predictor
of childhood emotional and behavioural difficulties across all domains
was ADHD PGS. Notably, an exception to this trend was the anxiety
domain, for which the neuroticism PGS was the strongest predictor.
Polygenic-P, alongwith depression and chronic pain PGS also emerged
as consistent predictors across the board. By contrast, for parental
indirect effects, the strongest predictors tended to be the PGS for
autism, polygenic-P, and neuroticism, albeit with a stronger signal
overall for the maternal effects compared to the paternal effects
(Supplementary Fig. S5). In addition, a general trend to attenuation in
conditionalmodels (i.e., most points sitting below the diagonal) canbe
observed across PGS traits, with the conditional models typically
yielding lower (shrunk) standardized estimates than the uncondi-
tional model.

Effect size shrinkage
Effect size estimates of parent and offspring PGS are expected to differ
between conditional and unconditional models (Supplementary
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Fig. 2 | Parent-offspring PGS effects on general and specific emotional and
behavioural difficulties domains. Effect sizes and confidence intervals for con-
ditionalmodels considering parent and offspring polygenic scores (PGS) effects on
the general (P) and specific emotional and behavioural difficulty domains. Sample
size N = 14,959. Point estimates represent beta coefficients and error bars are 95%

CIs. ADHD Attention-deficit/hyperactivity disorder, AUT Autism spectrum dis-
order, DEP Broad depression, CPAIN Chronic pain, polygenic-P first unrotated
principal component of all neuropsychiatric PGS. Facets: ODDOppositional defiant
disorder, CND Conduct disorder, HYP Hyperactivity, INA Inattention, DEP
Depression, ANX Anxiety. *Survives correction for multiple testing (“Methods”).
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Data 7–9) because direct and indirect paths of genetic transmission
can be reciprocally confounded. For example, demographic phe-
nomena, captured by indirect genetic effects (proxied by parental PGS
effects), can contribute to PGS–phenotype associations in the off-
spring. Vice versa, when not adjusted, parental PGS effects on off-
spring phenotypes will also capture genetic transmission, not only
putative genetic nurture effects. We can quantify the extent to which

this is the case by considering the relative shrinkage of parameter
estimates from unconditional to conditional PGSmodels (“Methods”).
Figure 3 (bottom panel) depicts shrinkage of offspring PGS effects, for
those models favoured over the null model (“Methods” section and
Supplementary Data 10; PC1 PGS not shown for clarity).

For example, virtually no shrinkage was observed for the
ADHD PGS across domains, indicating that only direct genetic
effects were contributing to this relationship. Conversely, the
effects of the Autism PGS underwent substantial shrinkage sug-
gesting either indirect genetic effects or demographic confound-
ing at play. With the exception of the ADHD PGS, virtually all
offspring PGS effects underwent shrinkage. Taking for example the
polygenic-P PGS, shrinkage was evident across all specific domains
(range = 25–38%).

Polygenic risk transmission to symptoms of emotional and
behavioural difficulties
We then proceeded to test formally whether polygenic contributions
of neuropsychiatric-related risk across symptoms of emotional and
behavioural difficulties were likely to be mediated by the general or
specific domains, or whether effects were heterogeneous across
symptoms within domains. Our analytical strategy is detailed in the
“Methods” and summarized in Box 2. Briefly, for each PGS model
favoured over the null model, we statistically compared a restrictive
common pathway model to a more flexible specific pathways
model25,26, at both levels of the hierarchy (i.e., first- and second-order
level domains). The more restrictive model (henceforth ‘P-mediated’
model) assumes that PGS effects were uniquely mediated by the gen-
eral domain ‘P’. This was compared to a less restrictive model in which
effects were freely estimated over specific dimensions (the ‘domain-
heterogeneity’ model). Finally, this latter model was compared to a

BOX 2

Summary of the analytical
procedure

for each PGS:
1. fit null model
2. fit alternative models (p-mediated and domain-heterogeneity

models)

3. compare models: χ2diff (null, p-mediated, domain-heterogeneity)
4. if (fit p-mediated > fit null model) then
5. statistical inference (p-mediated and domain-heterogeneity

models)
6. if (fit domain-heterogeneity > fit p-mediated > fit null) then
7. for each specific factor in the domain-heterogeneitymodel:
8. fit symptom-heterogeneity model

9. compare models: χ2diff (domain-heterogeneity, symptom-
heterogeneity).

10. if (fit symptom-heterogeneity >fit domain-heterogeneity) then
11. statistical inference (symptom-heterogeneity model)

Fig. 3 | Polygenic scores contributions across emotional and behavioural dif-
ficulties domains. a Comparison of standardized regression coefficients for off-
spring PGS effects from conditional to unconditional models, showing the relative
importance of PGS contributions across emotional and behavioural difficulties.
Faded: does not survive correction formultiple testing or not selected over the null
model. b Shrinkage of standardized effects for the offspring PGS from uncondi-
tional (i.e. green) to conditional (i.e. red) models across emotional and behavioural
difficulties domains, restricted to models favoured over the null model (PC1 PGS
not shown for clarity). Estimates are plotted in descending order of shrinkage.

Note: Shrinkage estimates in (b) were obtained from standardized estimates for the
child PGS in the conditional and unconditional models shown in panel a (see
“Methods”). ADHD Attention-deficit/hyperactivity disorder, AUT Autism spectrum
disorder, BIP Bipolar disorder, SCZ Schizophrenia, AN Anorexia nervosa, ANX
Anxiety, PTSD Post-traumatic stress disorder, DEP Broad depression, CPAIN
Chronic pain, PC1 first unrotated principal component of all neuropsychiatric (and
related) PGS, Polygenic-P first unrotated principal component of all neu-
ropsychiatric PGS. Facets: ODD Oppositional defiant disorder, CND Conduct dis-
order, HYP Hyperactivity, INA Inattention, DEP Depression, ANX Anxiety.
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model allowing for PGS effects directly over symptom indicators
(‘symptom-heterogeneity’ model), for each specific domain in turn.

Figure 4 shows results for the heterogeneity analyses. For
instance, the P-mediatedmodel was favoured for the polygenic-P PGS,
indicating that PGS contributions for general neuropsychiatric risk
over emotional and behavioural difficulties domains were consistent
with mediation by the general domain. The P-mediated model was
favoured also for depression and autism PGS. One important distinc-
tion, however, is that while for the polygenic-P PGS parental and off-
spring effects were both observed, parental depression PGS effects
were overall near 0 and not statistically significant. This suggests that
the mediated effects of the depression PGS over the specific domains
were drivenmainlybydirectgenetic effects. Conversely, for the autism
PGS, only parental PGS contributions were evident across domains.

As a comparison, for the ADHD PGS a more nuanced picture
emerged: The domain-heterogeneity model was favoured for the
conduct, inattention and depression domains, suggesting that ADHD
PGS effects over symptoms for these traits were likely to be mediated
by their corresponding specific domains (i.e. scale-level factors). In
other words, there was no symptom heterogeneity at play in terms of
(direct) PGS effects. However, for oppositional-defiant and hyper-
activity domains, the symptom-heterogeneity model was favoured,
suggesting heterogeneity in direct effects over symptoms. In Supple-
mentary Material, we discuss specific examples of symptom and
domain-level heterogeneity (Supplementary Data 12 and 13 and
Figs. S6–S9).

Discussion
We investigated direct and indirect polygenic risk contributions of
neuropsychiatric-related traits to general and specific domains of
childhood emotional and behavioural difficulties. Three main findings
emerged. First, we observed that, when adjusting for parental poly-
genic scores, the offspring polygenic score effects were generally
smaller thanwhat would be naively obtained fromunadjusted analyses
in singletons. Second, parental indirect genetic effects, reflecting
polygenic risk for neuropsychiatric traits, were evident across general
and specific domains of emotional and behavioural difficulties. Third,
overall, indirect genetic contributions tended to bemediated either by
the general domain or by the specific domains, while direct genetic
effects were also found to contribute heterogeneously across symp-
toms within specific domains.

An important result for PGS work in developmental psychology
regards the decrease, or shrinkage, in effect sizes of PGS–phenotypes
associations that is observed when conditioning on parental PGS,
hence adjusting for indirect genetic effects. While this phenomenon is
well documented for cognitive-related traits11,27 our results indicate it
goes beyond the cognitive domain. For example, our results for the
depression PGS provide converging evidence with previous GWAS
work28. However, we also show that shrinkage depends on the target
phenotype of interest, suggesting a more nuanced picture than gen-
eralized confounding. For example, the neuroticismPGS effects on the
depression domain exhibited substantial shrinkage, but this was not
the case with the anxiety domain, where no shrinkage was observed.

Fig. 4 |Heterogeneity test results acrosspolygenic scoremodels.Facets contour
and letters indicate the favoured model: a/Green = P-mediated model, b/orange =
domain-heterogeneity, c/dashed-black = symptom heterogeneity model. ADHD
Attention-deficit/hyperactivity disorder, AUT Autism spectrum disorder, DEP

Broad depression, CPAIN Chronic pain, Polygenic-p first unrotated principal com-
ponent of all neuropsychiatric PGS. Facets: ODD Oppositional defiant disorder,
CND Conduct disorder, HYP Hyperactivity, INA Inattention, DEP Depression, ANX
Anxiety.
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This suggests that while environmentally mediated effects related to
neuroticism may play a role in childhood depression, the main reason
for the association with childhood anxiety is genetic overlap.

Our findings triangulate evidence on genetic nurture effects from
previous work using different methodologies in the MoBa sample. For
example, 7showed genetic nurture effects on depressive symptoms
(but not anxiety), while29 foundonly suggestive evidence in this regard.
Here, we find evidence that parental risk is linked, albeit not strongly,
with both anxiety and depression symptomatology in childhood.
Indirect genetic effects on anxiety were driven by parental genetic risk
for depression, while indirect genetic effects on depression were dri-
ven by neuroticism, chronic pain, general polygenic neuropsychiatric
risk (polygenic-P) and, to a lesser extent, by depression itself.

Recent work using non-transmitted polygenic scores for neu-
ropsychiatric conditions has found limited evidence for indirect
genetic effects on emotional problems across development30. The
discrepancy in findings between our study and Shakeshaft et al.’s study
maybedue to differences in power, arising fromdifferent sample sizes
and designs. We note that the sample size for Shakeshaft et al. was
about half the sample size of the present study, potentially limiting its
ability to detect genetic nurture effects (consistent with power calcu-
lations presented in the Supplementary Material, page 4). In addition,
the trio design that we employed is more powerful than the non-
transmitted approach to detect indirect genetic effects31.

Other converging evidence emerging from our analyses involved
indirect genetic effects of the neuroticism PGS on the opposition-
defiant symptom domain. Evidence employing different methodolo-
gies, such as variance decomposition-based methods, is starting to
accumulate implying genetic nurture effects over the externalizing
spectrum32,33. Interestingly, however, while bothmaternal and paternal
indirect genetic effects were evident when considering neuroticism
and chronic pain contributions to the depression domain, only
maternal genetic effects were evident for neuroticism and ODD. This
might suggest a form of rater bias effect whereby mothers with a
higher genetic predisposition to neuroticism are also more likely to
report more child oppositional and defiant behaviour.

We previously did notfind evidence for genetic nurture effects on
the externalizing spectrum using similar methodology in the MoBa
sample12,13, except for neuroticism on ADHD. Conversely, here, we
observed parental indirect genetic effects of autism and general neu-
ropsychiatric risk on the conduct domain. Furthermore, we find aut-
ism, neuroticism, chronic pain and general neuropsychiatric risk PGS
effects on the hyperactivity and inattention domains. On the one hand,
the PGS for autism, chronic pain and general neuropsychiatric risk
were not previously investigated in this context. On the other, it might
be that separating between domain subdimensions, such as inatten-
tion and hyperactivity, within a multivariate setting is a useful level of
analysis in this regard. It is of note that for several models involving
polygenic predispositions for chronic pain, neuroticism and autism,
only parental contributions were evident—suggesting either family-
wide environmental processes as a main route for transmission, or
more unspecific confounding driving this relationship. Future studies
should disentangle these alternative hypotheses.

Finally, we provide an indication of how polygenic scores may
differentially link to behavioural and emotional symptoms. We found
that the ADHD PGS was not a specific predictor restricted to related
domains (hyperactivity and inattention), but was the strongest pre-
dictor across emotional and behavioural difficulties including general
and specific domains. While comparisons of PGS effect sizes is ham-
pered by considerations of GWAS power, we note that the ADHD
GWAS was not the most powered across those considered. The asso-
ciation patterns of other PGS, including chronic pain, depression and
polygenic-P were also largely unspecific (i.e. not unique to any one
domain), except for the anxiety dimension. These results are con-
sistent with previous recounts in independent child cohorts22–24.

We cannot exclude that these results may partly arise due to
cross-trait assortative mating34, and/or the phenotypic distance
between child phenotypes and some of the adult GWAS employed
here. These considerations may impact the level of specificity of PGS
and explain the observed attenuation of PGS effects.However, we note
that shrinkagewas not observed selectively for adult-basedGWAS (e.g.
depression and neuroticism) compared to child-based GWAS (e.g.
ADHD and ASD). After conditioning on the parental PGS, we observed
that the PGS for ADHD, neuroticism and chronic pain was associated
heterogeneously across specific domains and symptoms, suggesting
some degree of specificity.

Such specificity of direct and indirect effects can have practical
implications for research and intervention strategies. Considering
direct genetic effects, we show that focusing on the symptom level in
addition to the sum score level can provide novel insights. For exam-
ple, our findings indicate that polygenic predisposition for ADHD
relates more to motor rather than verbal impulsivity items (Supple-
mentaryMaterial). By extension, thismaypoint to different aetiologies
for subdimensions of hyperactivity-impulsivity in childhood ADHD
having to do with ‘motion’ versus ‘speech’. Distinguishing these sub-
dimensions could yield further nuance in child developmental psy-
chology work as well as genomic studies35,36. Considering indirect
genetic effects, specificity might point to interventions aimed at par-
ental characteristics that are likely to have an impact on particular
symptom domains in their offspring. As an example, paternal and
maternal indirect effects of neuroticism were more important for
depression and inattention (Fig. S9), suggesting that interventions
aimed at reducing neuroticism in the parents may have an impact on
childhood symptoms of depression and inattention, but not necessa-
rily onother symptomdomains. Conversely, thematernal and paternal
indirect effects of the polygenic-P PGS were found to be mediated by
the general domain, which can be considered as an index of comor-
bidity (as shown empirically elsewhere, Fried et al.37). This suggests
that indirect genetic effects (i.e., putative environmental, family-wide
processes) related to general parental psychopathology may impact
the comorbidity of symptoms in childhood, and may thus be a target
of preventive interventions and improve prognosis across a range of
emotional and behavioural difficulties.

The results of the present work need to be considered in light of a
number of caveats. First, GWAS of behavioural traits, based on scale-
level measurements, can also be considered as (implicit) common
pathway models (with equal indicator weights). That is, GWAS of sum
scores can be likened to testing the hypothesis that an SNP is influ-
encing all indicators via the same route (namely the scale-level factor)
andwith all indicators equally contributing to the factor38,39. Symptom-
level PGS obtained from item-level GWAS (e.g. ref. 40) are therefore
bound to better capture specificity, and might be promising avenues
to fine-tune the search for heterogeneous pathways of risk, whether
for direct or indirect genetic effects. Second, the fact that several PGS
were not favoured over the null model, in conditional analyses, does
not mean that they are not worth investigating further. We should
expect that at larger sample sizes even more modest effects will be
uncovered. Third, replicationof these findings acrossdifferent raters is
essential. As mentioned, some of the indirect genetic effects we
detected, for example, parental PGS effects of chronic pain on the
hyperactivity domain, might have arisen because of rater bias. For
example, mothers with a higher genetic predisposition to chronic pain
might be more likely to perceive their offspring as hyperactive and in
turn rate their offspring’s hyperactivity higher. Relatedly, the child-
parent agreement on internalizing symptoms for the SCARED ques-
tionnaire is low41 and this may have impacted our results for the
anxiety domain.

Future studies should also examine a broader range of neu-
ropsychiatric outcome measures. We found that autism PGS showed
only indirect, and not direct, genetic effects on emotional and
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behavioural difficulties. However, there may be more direct genetic
effects on core autistic traits such as atypical social communication
and restricted and repetitive behaviours. Further, replication of all
findings in independent cohorts and validation with different designs
(e.g. ref. 5), including causal inference methods such as within-family
Mendelian randomisation, is needed.

Furthermore, a number of caveats relating to genetic nurture and
specifically to the models we employed here should be addressed in
future research. First, the phenotypic definition in GWAS is of key
importance. PGS will capture (direct and indirect) average genetic
effects on a phenotype reflecting a specific developmental period and
milieu. In the context of genetic nurture, the implications of mapping
adult-derived PGS on childhood symptomatology are not straightfor-
ward. For example, adult-basedGWASofpsychiatric traits is unlikely to
capture the full complexities of genetic influences on childhood phe-
notypes across development42 (e.g. early vs late-onset ADHD). How-
ever, GWAS of child phenotypes is unlikely to serve as good proxies of
parental risk factors relevant to those child phenotypes (e.g. parental
neuroticism). As such, GWAS of relevant adult phenotypes may be
more likely to appropriately capture genetic nurture effects (e.g. adult
depression GWAS -> parental depression -> parenting -> offspring
outcomes). FutureGWASwork leveragingwithin-family designs across
the developmental spectrum could improve our understanding in this
regard.

Second, rare variation, and in particular the interplay between
rare and common variation43, may play an important role in the risk
transmission of psychiatric traits. Asmoredevelopmental cohortswith
sequencing data are becoming available this will be an important
avenue to be explored.

Third, assortative mating may account for a substantial propor-
tion of indirect effects detected here and is something that we cannot
exclude based on a two-generation model alone4. A three-generation
model, or other methods based on different assumptions and designs
that can further disentangle parental assortment from indirect genetic
effects due to genetic nurture will be a key avenue for future work in
this area4,5,44,45. Finally, future work investigating the degree to which
these results replicate across the genetic ancestry spectrum and in
diverse social settings is warranted.

In conclusion, by examining family-level genomic data we pro-
vided an account of how neuropsychiatric-related polygenic risk con-
tributes to childhood emotional and behavioural difficulties via direct
and indirect genetic effects. Overall, we observed evidence consistent
with a putative environmental route to domain-general symptoma-
tology, while also demonstrating domain-specific direct and indirect
neuropsychiatric-related genetic contributions. An important aim for
future studieswill be to triangulate this evidencewith different designs
and independent samples. Thegoalwill be to uncoverwhether indirect
genetic effects detected are in fact attributable to genetic nurture
processes, and if so, which specific “nurturing” environments are
implicated.

Methods
Ethics
Informed consent was obtained from all study participants. The
establishment of MoBa and initial data collection was based on a
license from theNorwegianData ProtectionAgency and approval from
The Regional Committees forMedical and Health Research Ethics. The
MoBa cohort is currently regulated by the Norwegian Health Registry
Act. The current study was approved by The Regional Committees for
Medical and Health Research Ethics (ethical approval: 2016/1702).

Sample
We analyse data from the ‘The Norwegian Mother, Father and Child
Cohort Study (MoBa)’ a population-based pregnancy cohort study
conductedby theNorwegian Institute of PublicHealth46,47. Participants

were recruited from all over Norway from 1999 to 2008. The women
consented to participation in 41% of the pregnancies. The cohort
includes approximately 114.500 children, 95.200 mothers and 75.200
fathers. The current study is based on version 12 of the quality-assured
data files released for research in January 2019.

A description of the cohort and theQCperformedon genetic data
is available elsewhere48. Here we focus on a subset of the total cohort
comprising complete trios from unrelated families, and further
restricted to one child per family for a total of 30,048 families. Selec-
tion of individuals among pairs of siblings within families was per-
formed by prioritizing based on phenotypic availability across the six
emotional and behavioural domains considered in analyses and
described below. That is, within genotyped families with more than
one offspring, only one at random was retained, unless phenotypic
data was available for only one person in which case that child was
prioritized over the others. This yielded a total of 14,959 genotyped
family trios with at least one phenotypic observation available across
emotional and behavioural difficulties when children were aged 8
years. Of these, 51% of children were females. Figure 5 is a flowchart of
the study sample size.

Measures
Emotional and behavioural difficulties. We used maternal reports
fromquestionnaire data collectedwhen childrenwere aged 8 years, the
first MoBa wave with an extensive range of measures for emotional and
behavioural difficulties. Specifically, we used item-level data measuring
symptoms of depression (short mood and feelings questionnaire49; 13
items), anxiety (screen for child anxiety-related disorders50; 5 items),
conduct problems (18 items from the 31 items rating scale for disruptive
behaviour disorders [RS-DBD]51), oppositional defiant disorder (RS-
DBD; 8 items), and hyperactivity (RS-DBD; 9 items) and Inattention (RS-
DBD; 9 items). Internal consistency for all measures based on items
included in the analytical sample is reported in Supplementary Data 11.
Supplementary Data 1 reports item frequencies across all measures.

Polygenic scores
PGS were calculated with LDpred252, a Bayesian method to derive
polygenic scores using information on the genetic architecture of a
trait, and on Linkage Disequilibrium (LD) obtained from a reference
panel. To compute PGS, recommendedquality control guidelineswere
followed and variants included were restricted to an extended set of
HapMap3 variants53. UK Biobank was used as a reference LD panel in
PGS calculations using precomputed LD matrices provided in ref. 53.
PGSwere generated by using the ‘auto’ option.We generated PGS for a
selection of GWAS summary statistics for neuropsychiatric traits
including Autism spectrum disorder54, Bipolar disorder55,
Schizophrenia56, Attention -deficit/hyperactivity disorder (ADHD)57,
Anorexia nervosa58, Anxiety59, Post-traumatic stress disorder (PTSD) 60,
Broad depression61, as well as neuropsychiatric-related traits including
Neuroticism62, Insomnia63, Chronic pain64, for a total of 11 PGS. We
made this selection in order to cover the phenotypic domains involved
in analyses as well as neuropsychiatric-related traits previously found
to be associated with general and specific emotional and behavioural
domains in independent cohorts22,24, while being parsimonious in PGS
inclusion to limit the burden of multiple testing. In addition, we cre-
ated two multivariate PGS from the first unrotated principal compo-
nent of the neuropsychiatric PGS (‘polygenic-p’) and from all the
scores together (PC1) (Supplementary Data 4). Finally, we generated a
PGS based on a GWAS of hair colour (red) in UKB as a negative control
in our analyses65. Supplementary Data 14 reports information on the
GWAS summary statistics employed in analyses.

Analyses
Wemodel item-level data from these measures in hierarchical models
of psychopathology. We fit a second-order and a symmetric bifactor
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model (our ‘base’ models), where items of different emotional and
behavioural difficulties scales are loaded on specific latent factors,
reflecting their corresponding scales. We then compared model fit
using standard model fit indices including CFI, SRMR, RMSEA and chi-
square difference test. We examined parameter estimates and model
fit indices carrying forward in analyses the more suitable model to the
data at hand (Supplementary Material for further discussion)66.

Importantly, we do not explicitly investigate a particular hier-
archical taxonomy either data- or theory-driven (e.g. refs. 67,68), for
example, distinguishing between internalizing and externalizing
domains. Instead, we focus on how well specific domains, reflecting
scale-level measurements of behavioural and emotional difficulties,
capture polygenic neuropsychiatric-related risk on corresponding
symptomatology. Additionally, we test how well a general behavioural
and emotional domain, consistent with a common cause model, cap-
tures polygenic effects across specific domains and their symptom
indicators.

Power simulations
We performed power simulations for a multiple indicators multiple
causes (MIMIC) version of the more suitable base hierarchical model.
We used weights from the base model to simulate data and run power
simulations based on a combination of three data-generating scenarios
involving joint effects of parental and offspring polygenic scores on
either the general (P) or the specific emotional and behavioural
domains (Supplementary Material). Each of these combinations was
tested across fixed parameters for the child and mother PGS (beta =
0.04, and beta =0.03 respectively) and three different parameters for
the father polygenic score (betas 0.03, 0.01, and 0.001), holding con-
stant sample size at N= 15,000 (our maximum sample size).

Modelling strategy
For each PGS considered, we fit a set of structural equation models
(SEMs) (depicted in Fig. 1) including a ‘null’ model where joint PGS
effects for parents and offspring traits over the general domain were
fixed to 0 (‘null model’, panel a); and two alternative models where
joint parent-offspring PGS effects over either the common factor (‘p-
mediated’, panel b), or the specific factors (‘domain-heterogeneity’,
panel c)were freely estimated. Finally, for eachof the specificdomains,
we estimated amodelwhere PGSeffects on itemswereallowed (i.e. not
mediated by general or specific domains; ‘symptom-heterogeneity’,
panel d). Box 2 shows a step-by-step summary of the procedure.

We then performed a model comparison between null,
p-mediated, and domain-heterogeneity models, using a chi-square dif-
ference test (χ2dif f ), as summarised in Box 2. In a similar fashion to

ref. 25 this test provided an indication of whether a common or
independent pathway model better fitted the data. In practice, we
tested whether direct and indirect PGS effects on behavioural and
emotional symptoms were more likely to be mediated by either a
general dimension, common across all symptom domains, or a
domain-specific dimension (e.g. depression domain). Conversely, if
the symptom-heterogeneity model was favoured such effects were
deemed as heterogeneous across items within domains. All nested
comparisons were adjusted for multiple testing, alpha =0.05/N (N =
nested comparisons). If the null model was favoured, no further
inference was performed (i.e. fit p-mediated < fit null model; although
we report results for all models tested in Supplementary Data 7–9). If
the alternative p-mediated model was not rejected, joint PGS effects
over general and specific domains were adjusted for multiple testing
(i.e. for all fit p-mediated > fit null models). P-value adjustment was
performed as follows: first, for every offspring polygenic score for
which the P-mediated model was favoured over the null model, we
tested the hypothesis of direct genetic transmission (i.e. adjusting for
indirect effects). To this end, we performed an FDR
Benjamini–Hochberg procedure across Ntests =N PGS × 7, accounting
for all tests performed across the general factor + 6 specific factors.
Second, we tested the hypothesis that maternal or paternal indirect
effects were present on any given factor, for any given score, condi-
tional on the child polygenic score, performing an FDR
Benjamini–Hochberg procedure for a total of Ntests =N PGS× 7 × 2 (i.e.
further accounting for the fact that there are 2 ways to detect indirect
effects, either via the maternal or the paternal PGS). To compare how
parent-offspring PGS contributions differed in conditional models
compared to unconditional models, we repeated these analyses
separately for the offspring PGS (i.e. not adjusting for parental PGS),
and for parental PGS (i.e. including both mother and father PGS, but
not the offspring PGS in the models). Again, analyses were corrected
for multiple testing performing an FDR Benjamini–Hochberg proce-
dure across Ntests =N PGS × 7, for the child models, and Ntests =N
PGS × 7 × 2 for the parent models. Box 2 is a step-by-step summary of
the analytical procedure. To quantify the level of shrinkage for parent-
offspring PGS effects between unconditional and conditional models
we calculated the percentage decrease of standardized beta coeffi-
cients between these models, i.e. (1 − (abs(conditional beta)/abs(un-
conditional beta))) × sign(unconditional Beta) × 100.

All polygenic scores were standardized and adjusted for 20
genetic principal components, genotyping centre, chip and batch, as
well as sex and year of birth, and residuals were used in subsequent
analyses. Sex and year of birth were also included in all models tested
as regressors of the emotional and behavioural items. Biological sex

Fig. 5 | Study flow-chart. Diagram of the study sample selection.
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wasderived from chromosomal data. Analyses were not run separately
by sex because of power considerations. Analyses were conducted in R
(version 3.5.0), RStudio (version 1.4.1717) and on the Colossus HPC
Cluster, SEM models were fitted using Lavaan69 (version 0.6-8). All
models were fit using a robust weighted least square (WLS) estimator
(WSLMV: diagonally weighted least square estimation with robust
standard errors, and mean and variance adjusted test statistics), using
pairwise deletion for missing data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The consent given by the participants does not open for storage of
data on an individual level in repositories or journals. Researchers who
want access to data sets for replication should submit an application to
datatilgang@fhi.no. Access to data sets requires approval from The
Regional Committee forMedical andHealth ResearchEthics inNorway
and an agreement with MoBa.

Code availability
No custom computer codewas used in the study. The software used in
the data preparation and analysis were R 3.5, Lavaan 0.6–9, and
LDpred2 (bigsnpr70 1.12.16). Code for data preparation and analyses is
publicly available at https://github.com/AndreAllegrini/IRISK-p71.
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