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Abstract

Childhood psychiatric symptoms are often diffuse but can coalesce into discrete mental illnesses 

during late adolescence. We leveraged polygenic scores (PGSs) to parse genomic risk for 

childhood symptoms and to uncover related neurodevelopmental mechanisms with transcriptomic 

and neuroimaging data. In independent samples (Adolescent Brain Cognitive Development, 

Generation R) a narrow cross-disorder neurodevelopmental PGS, reflecting risk for attention 

deficit hyperactivity disorder, autism, depression and Tourette syndrome, predicted psychiatric 

symptoms through early adolescence with greater sensitivity than broad cross-disorder PGSs 

reflecting shared risk across eight psychiatric disorders, the disorder-specific PGS individually or 

two other narrow cross-disorder (Compulsive, Mood-Psychotic) scores. Neurodevelopmental PGS-

associated genes were preferentially expressed in the cerebellum, where their expression peaked 

prenatally. Further, lower gray matter volumes in cerebellum and functionally coupled cortical 

regions associated with psychiatric symptoms in mid-childhood. These findings demonstrate that 

the genetic underpinnings of pediatric psychiatric symptoms differ from those of adult illness, and 

implicate fetal cerebellar developmental processes that endure through childhood.

Risk for psychiatric disorders arises early in life, reflecting in part the cumulative effects 

of thousands of common genetic variants1,2. Data from ongoing genome-wide association 

studies (GWASs) provide updated templates to calculate individual risk for psychiatric 

disorders such as schizophrenia (SCZ), bipolar disorder (BIP) and autism spectrum disorder 

(ASD) through PGSs3–5. Along with gene expression data, PGS data have also provided 

new insights into the biological origins of psychiatric illness, supporting an essential role 

for synaptic organization6,7. Studies of PGS may ultimately lead to the development of 

clinically useful biomarkers that predict the occurrence of psychiatric illness, including 

in children who have yet to develop full-fledged illness and who may benefit from early 

intervention8,9.

Despite great promise, several factors currently limit the potential clinical application of 

PGSs in children. First, the studies used to derive PGSs, such as those conducted by the 

Psychiatric Genomics Consortium (PGC) and other large-scale efforts, have largely–and in 
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many cases exclusively–enrolled adult participants10, even when disorders usually diagnosed 

in childhood, including ASD4 and attention deficit hyperactivity disorder (ADHD)11,12, 

are examined. However, the clinical relevance of genetic loading in children for disorders 

that usually present in adulthood remains uncertain. Moreover, even for disorders usually 

first diagnosed in children, these diagnoses may not persist or may change in adulthood13, 

potentially complicating the application of PGSs across development.

Second, even more so than in adults14, psychiatric symptoms in children tend to be poorly 

differentiated and often do not conform with discrete diagnostic categories15,16. Because 

established disease-specific PGSs were derived from case–control studies, it remains largely 

unclear whether these PGSs capture more subtle psychopathology in children. In research 

studies, such psychopathology is often assessed using dimensional measures that are 

continuous across healthy and disease populations, and are not bound by conventional, 

threshold-based diagnostic categories. This approach enables the identification of clinical 

features that may associate with genetic loading differently in children than in adults. 

For example, an emerging pattern for ADHD PGS suggests that increased PGS values 

in children are linked to a range of externalizing symptoms beyond inattention and 

hyperactivity, including aggression17. In contrast, studies relating SCZ PGS to psychotic 

symptoms in children have been inconsistent18,19, perhaps reflecting important differences 

in how psychosis is measured or experienced in children versus adults.

Third, given such clinical heterogeneity, the substantial overlap in PGSs across different 

psychiatric conditions20–22 further complicates the search for parsimonious relationships 

between polygenic risk indices and clinical syndromes in children. Cross-disorder PGSs 

account for genomic risk that overlaps across psychiatric conditions20,22, but again may not 

capture fluid relationships between clusters of genetic risk and emerging psychopathology 

in children. Further, uncertainty persists about when during neurodevelopment, and where 

within the brain, polygenic loading lays the foundation for psychiatric risk.

We leveraged genomic data and measures of psychopathology from the population-based 

Adolescent Brain Cognitive Development (ABCD) Study, and also from the Generation 

R Study as a replication cohort, to evaluate the relationships of disease-specific and cross-

disorder PGSs to dimensional psychopathology in mid-childhood. In each cohort, we found 

that a latent neurodevelopmental factor (termed NDV) PGS, identified from the latest PGC 

cross-disorders study21, captured variance in dimensional psychopathology across numerous 

domains with greater sensitivity than any disease-specific or other cross-disorder PGS. 

Among eight neuropsychiatric disorders examined in the PGC cross-disorder study, the 

NDV factor represented genetic risk primarily shared among early NDV disorders, such 

as ASD, ADHD and Tourette syndrome, along with major depression21. Using data from 

postmortem gene expression atlases, we also found that NDV effects converged on synaptic 

organization within the fetal cerebellum, a pattern echoed by an association between 

cerebellar volumes derived from magnetic resonance imaging (MRI) and psychopathology 

within the ABCD sample.
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Results

Participants

Data from two developmental cohort studies, ABCD and Generation R, were included in the 

clinical and genomic analyses; in addition, structural MRI data were analyzed from ABCD. 

The ABCD Study enrolled 11,875 children, aged 9-10, across 22 US sites. For the current 

analysis, we used complete data from baseline assessments (ages 9-10; N = 11,852; 47.8% 

female; 24.6% self-reported nonwhite) as well as all clinical follow-up data from year 2 

(ages 11–12; N = 8,076; 47.7% female; 21.5% self-reported nonwhite) that were available 

in June 2022 (ABCD Data Release 4.0). The Generation R Study is a European prospective 

birth cohort study which follows the offspring of 9,778 mothers from fetal life to adulthood; 

we used all data from children at ages 9 (N = 1,850; 50.4% female) and 13 (N = 1,791; 

50.3% female) that were available in June 2022.

Dimensional psychopathology and PGSs

Dimensions of psychopathology in ABCD were measured using the Child Behavior 

Checklist (CBCL) and Prodromal Questionnaire–Brief Child Version (PQ-BC). CBCL 

items are organized into eight individual syndrome scales (anxious/depressed, withdrawn/

depressed, somatic complaints, social problems, thought problems, attention problems, rule-

breaking behavior and aggressive behavior) as well as three broader scales (Internalizing, 

Externalizing and Total symptoms). Consistent with earlier reports16, dimensions of 

psychopathology across the individual syndrome and broader scales demonstrated moderate-

to-strong bivariate correlations both at baseline (N = 11,852; Pearson r values, 0.29–0.85; 

P values < 9.62 × 10-227) and at year 2 (N = 8,076; Pearson r values, 0.30–0.84; P values 

< 5.63 × 10-167; Fig. 1). Measurements within individuals tended to be stable over time 

(CBCL Total symptoms, r = 0.71; other CBCL scales, r values 0.53–0.69). In contrast, 

prodromal psychosis symptoms correlated comparatively weakly with CBCL domains at 

baseline (Pearson r values, 0.07–0.14; P values < 5.26 × 10-14) and year 2 (Pearson r values, 

0.11–0.19; P values < 1.29 × 10-22), and were less consistent over time (r = 0.33). To 

replicate our findings, we leveraged data from the Generation R Study, a prospective birth 

cohort study which follows the offspring of 9,778 mothers from fetal life to adulthood. In 

this sample, the structure of psychopathology at age 9 (N = 1,850) and age 13 (N = 1,791) 

was comparable to that of the ABCD sample. Correlations among CBCL syndrome and 

broader scales were moderate to strong, underscoring the lack of differentiation of child 

psychopathology into discrete subtypes (age 9: Pearson r values, 0.25–0.98; P values < 1.32 

× 10-28; age 13: Pearson r values, 0.26–0.97; P values < 4.07 × 10-29; Fig. 1). Although 

psychosis spectrum symptoms were measured using a different scale in Generation R (ref. 

23) than in ABCD, they similarly showed a relatively weak correlation with CBCL scores 

(age 9: Pearson r values, 0.11–0.19; P values < 1.02 × 10-06; age 13: Pearson r values, 

0.11–0.24; P values < 9.64 × 10-06).

Genotype data from 4,462 unrelated ABCD youths of European ancestry were used to 

generate individual participants’ PGSs for eight psychiatric illnesses (anorexia nervosa 

(AN), obsessive-compulsive disorder (OCD), Tourette syndrome (TS), ADHD, ASD, 

major depressive disorder (MDD), BIP, SCZ), plus a broad index of cross-disorder risk 
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(CROSS) across the aforementioned eight disorders, using summary statistics from the 

PGC2–4,11,21,24–27. The symptom correlation matrix of genotyped participants closely 

resembled that of the entire sample (Extended Data Fig. 1). Consistent with previous 

reports using ABCD baseline data28 and other PGS studies of psychopathology within 

comparable age groups28–30, among all disorder-specific PGSs, ADHD and MDD most 

strongly predicted dimensional psychopathology scores at ages 9–10. Additionally, CROSS 

significantly predicted a broad range of symptom categories, including psychotic spectrum 

symptoms (Fig. 2a). This overall pattern was largely unchanged at the year 2 follow-up (ages 

11–12; Fig. 2b).

Next, we used a recently reported method31 to detect latent clustering of cross-disorder 

genomic data through genomic structural equation modeling (gSEM). As per Lee et al.21, 

gSEM of the aforementioned eight-psychiatric-disorder GWAS identified three factors: 

NDV, which reflected loading of ADHD, ASD, MDD and Tourette syndrome PGSs; 

Compulsive (COMP), which reflected loading of anorexia nervosa, OCD and Tourette 

syndrome PGSs; and Mood-Psychotic (MP), which reflected loading of BIP, MDD and 

SCZ PGSs (Supplementary Table 1). Of these three gSEM-derived scores, NDV scores 

predicted the widest range of psychopathology (Fig. 2a,b and Supplementary Tables 2 

and 3). COMP and MP PGSs contributed minimally to variance in CBCL Total at ages 

9–10, and even less so at ages 11–12. Further, direct comparison of NDV versus all other 

individual PGSs, including disease-specific indices, indicated that NDV PGS accounted 

for significantly more variance in CBCL broader scales and psychosis spectrum symptoms 

at both timepoints, with the exception of MDD as a predictor of internalizing symptoms 

(Fig. 2c,d, Supplementary Fig. 1 and Supplementary Table 4). In a sensitivity analysis, 

we repeated baseline analyses using a different method for calculating PGS, PRS-CS, a 

Bayesian approach to PGS generation32, and found similar results (Supplementary Table 5).

Independent analyses with both disorder-specific and gSEM-derived factors of CBCL Total 

symptoms in Generation R showed similar results. At both timepoints (ages 9 and 13), NDV 

PGS was associated with the widest spectrum of psychopathology, although differences 

between NDV and ADHD narrowed at age 13 (Extended Data Fig. 2a,b and Supplementary 

Tables 6 and 7). NDV PGS again had greater predictive power than all other PGSs for 

CBCL Total and Externalizing symptoms at age 9, although no PGSs predicted Internalizing 

or Psychosis Spectrum symptoms within the smaller Generation R cohort at that age. At 

age 13, NDV PGS outperformed all PGSs except for ADHD in predicting CBCL Total, 

Externalizing, Internalizing and Psychosis Spectrum symptoms (Extended Data Fig. 2c,d, 

Supplementary Fig. 2 and Supplementary Table 8).

The substantial overlap in scores among CBCL syndrome-specific scales reflects in part 

a shared general factor of psychopathology (‘p’), which has been parsed from residual 

(orthogonal) variance in more specific measures using bifactor models of baseline ABCD 

CBCL data33. Applying PGSs, we determined the extent to which genetic mapping 

onto multiple specific symptoms reflected associations of PGSs with ‘p’ in ABCD. 

Among PGSs, only NDV, ADHD and MDD genetic loading associated significantly 

with ‘p’, although NDV effects were significantly stronger than the others (P values ≤ 

0.012). However, none of the ‘p’-residualized factors derived from either three-factor (‘p’, 
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internalizing, externalizing) or nine-factor (‘p’ and the eight syndrome-specific factors) 

models significantly associated with NDV or any other PGS (Supplementary Table 9).

Further, given the associations of NDV PGS with continuous measures of psychopathology, 

we also tested the relative strength of NDV PGS in predicting psychopathology that is strong 

enough to fall within the clinical range in the ABCD cohort. Of all disorder-specific and 

cross-disorder PGSs, when comparing the top with bottom quintiles, NDV PGS was the only 

measure of genetic risk that was consistently associated with higher odds of endorsing both 

psychopathology within the clinical range (CBCL Total score ≥ 64 (ref. 34)) at baseline 

(odds ratio (OR) = 1.88; 95% confidence interval (95% CI), 1.26–2.80; P = 0.002) and 

newly emergent clinical-range psychopathology at age 11–12 (OR = 2.30; 95% CI, 1.11–

4.77; P = 0.02), although the age 11–12 result would not survive false discovery rate (FDR) 

correction (Extended Data Fig. 3).

NDV gene ontology and spatiotemporal expression in brain tissue

We next leveraged gene ontology (GO) and postmortem gene expression databases to 

explore biological pathways through which NDV genes could impart risk for childhood 

psychopathology. After annotation35 of NDV single nucleotide polymorphisms (SNPs) to 

nearby genes, of 19,052 genes tested, 68 genes were significantly enriched for NDV SNPs 

after FDR correction (Q < 0.05; Supplementary Table 10). Although GO analyses of these 

68 significant genes yielded no FDR-significant GO terms, GO cellular component analysis 

of the top 5% most significant genes (P < 0.014, Q < 0.291, N = 952) indicated enrichment 

for synaptic processes, mostly localized in dendritic and neuron spines (Supplementary 

Table 11). Similar results were seen in sensitivity analyses that included the top 2% and 

top 10% most significant genes (Supplementary Table 12). Follow-up GO analyses focusing 

specifically on synaptic processes (SynGO)36 most strongly implicated presynaptic terms 

(Fig. 3a). In contrast, among 2,571 genes that were significantly (Q < 0.05) enriched for 

MP SNPs, SynGO revealed a preponderance of postsynaptic terms (Supplementary Fig. 

3a). Only eight genes mapped onto COMP-associated SNPs (Q < 0.05), likely reflecting 

smaller sample sizes in PGC GWASs that load onto this factor. As such, subsequent analyses 

focused on NDV and MP genes.

We next used FUMA (Functional Mapping and Annotation of GWAS)37 in conjunction with 

Genotype-Tissue Expression (GTEx) v8 (ref. 38) gene expression data to compare tissue-

specific expression of NDV and MP genes. Genes harboring NDV SNPs were most strongly 

expressed in the cerebellum (P = 2.14 × 10-7), followed by cerebral cortical and subcortical 

regions (Fig. 3b). In contrast, genes harboring MP SNPs were most strongly expressed in the 

cerebral cortex, followed by cerebellar and subcortical regions (Supplementary Fig. 3b).

To assess temporal patterns of NDV and MP gene expression within the cerebellum, and to 

conduct exploratory analyses in other brain regions, we used BrainSpan39 data, contrasting 

tissue obtained postmortem from fetal brain versus postnatal brain tissue in six brain regions. 

Within the cerebellum, FDR-significant NDV genes (N = 68) were expressed significantly 

more strongly before birth than after birth (P = 8.68 × 10-08; Fig. 3c,e). Across five other 

cortical and subcortical regions, expression levels of NDV genes also differed between 

pre- and postnatal timepoints in the mediodorsal nucleus of the thalamus and the striatum 
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(Supplementary Table 13). Conversely, MP genes were more highly expressed before birth 

than after birth in all regions assessed (for example, neocortex; Fig. 3d) except for the 

cerebellum (Fig. 3c) after correcting for multiple comparisons (uncorrected P values < 

0.001; Pcerebellum = 0.56) (Supplementary Table 13). Additionally, we inspected regional 

expression patterns of individual genes across the lifespan for top NDV genes (Extended 

Data Fig. 4). Two genes, SEMA6D and FOXP2, which have been implicated in the 

etiologies of neuropsychiatric disorders11,40, show marked differences in pre- and postnatal 

expression in the cerebellum (Extended Data Fig. 4).

Associations of gene expression patterns with symptoms

We next determined whether relationships between variation in NDV genes and dimensional 

symptoms were conditional on the developmental timing of cerebellar gene expression. 

First, we parsed all genes with available expression data into three groups based on 

expression levels in the cerebellum: those that show FDR-significant peaks in expression 

(1) before birth (N = 3,506 genes) and (2) after birth (N = 4,025 genes), and (3) those that 

do not significantly differ in expression between pre- and postnatal timepoints (N = 10,073 

genes). Then, we generated partitioned NDV PGSs (pPGSs) from each of these sets of genes 

and tested their association with psychopathology. Genes that were primarily expressed 

before birth in the cerebellum associated significantly with various CBCL scores (Q values 

2.55 × 10-05 to 0.019); genes that showed comparable pre- and postnatal expression levels 

exhibited similar associations with CBCL as well as PQ-BC (Q values 2.75 × 10-06 to 0.030; 

Fig. 4a and Supplementary Table 14). Conversely, PGSs calculated with genes expressed 

after birth in the cerebellum did not significantly predict CBCL scores (Q values > 0.05). In 

contrast, cumulative effects of postnatal NDV genes on CBCL were comparable to those of 

prenatal NDV genes within other subcortical structures and the neocortex (Fig. 4b–f).

Relationship of CBCL scores to cerebellar volumes

Baseline T1 MRI scans from all ABCD participants underwent rigorous visual quality 

control, resulting in retention of 3,878 scans from the unrelated European ancestry 

group, and 10,076 scans overall. Total cerebellar and cerebellar subregion volumes were 

determined after segmentation using Automatic Cerebellum Anatomical Parcellation Using 

U-Net with Locally Constrained Optimization (ACAPULCO) software, which has been 

validated in previous pediatric cohorts41. We then examined relationships among NDV 

PGSs, cerebellar volumes, and broader CBCL scores and PQ-BC. In the European ancestry 

group, neither NDV PGS nor NDV pPGS associated significantly with global brain 

volume measures (total brain, cortical, subcortical and cerebellar gray matter volumes; 

Supplementary Table 15). However, in the larger group (that is, not restricted to participants 

of European ancestry), total cerebellar gray matter volume was negatively associated with 

CBCL Total (P = 0.012) and Externalizing (P = 1.23 × 10-4) scores (Supplementary Table 

16). Among specific cerebellar lobule volumes, right lobules VIIt–VIIB had the strongest 

inverse association with CBCL Total scores, although this relationship did not survive 

multiple testing correction (β (beta coefficient estimate) = -0.035, P = 0.006, Q > 0.05). 

Volumes of the left lobules I–V (β = -0.43, P = 6.25 × 10-4, Q < 0.05) and VIII (β = 

-0.46, P = 1.88 × 10-04, Q < 0.05) and Vermis I–V (β = -0.38, P = 0.002, Q < 0.05), 

which are anterior regions that show functional coupling to somatomotor and association 
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cortex42, exhibited the strongest inverse associations with CBCL Externalizing score (Fig. 

5, Supplementary Fig. 4 and Supplementary Table 17). Exploratory analyses testing for 

associations between dimensional psychopathology and cortical and subcortical volumes 

outside of the cerebellum revealed significant inverse correlations in a number of cortical 

regions, including somatomotor and association cortex, and subcortical regions, including 

brain stem, thalamus and hippocampus (Extended Data Fig. 5 and Supplementary Tables 18 

and 19). Results from sensitivity analyses including subjects with the highest quality scans 

(that is, those rated as ‘1’ or ‘2’ per MRI data quality control in the Methods, N = 8,658) are 

reported in Supplementary Table 20.

Discussion

In this study we found that dimensional psychopathology in children is most strongly 

related to an NDV PGS comprising overlapping genetic variants across ADHD, ASD, 

MDD and Tourette syndrome. NDV scores explained more variance across the spectrum 

of psychopathology than any other disorder-specific or cross-disorder measure of genetic 

risk. Longitudinal data demonstrate stable and replicable effects of NDV PGS on 

psychopathology in early adolescence. Further, convergent data from complementary GO, 

gene expression and MRI datasets link presynaptic effects of NDV genes in the fetal 

cerebellum to downstream clinical effects. Collectively, these findings suggest a mechanism 

through which altered fetal cerebellar development instantiates risk for a wide range of 

childhood psychopathology.

These findings are consistent with growing evidence for the dimensional underpinnings 

of psychopathology and of the heritable, developmental origins of neuropsychiatric 

illness. Research studies of child psychopathology increasingly rely on dimensional scales 

reflecting deviation from age-related norms. As such, PGSs representing shared risk among 

psychiatric disorders may be well-suited to track with risk for emergent psychiatric illness. 

Previous studies, including an analysis of age 9–10 ABCD data, have reported significant, 

but weaker, effects of disorder-specific PGSs on dimensional psychopathology in mid-

childhood17,18,28,43. The present results indicate that polygenic risk models accounting for 

overlapping risk among NDV disorders are better suited to capturing psychopathology that 

occurs in childhood. For example, while psychosis spectrum symptoms were unrelated to 

SCZ PGS in both the ABCD and Generation R cohorts (consistent with some previous 

studies of children and adolescents18,44), they were significantly predicted by NDV PGS 

(at both ages in ABCD, and at age 13 in Generation R). This pattern contrasts with 

that seen in adults, where disorder-specific PGSs most strongly predict risk for their 

respective clinical syndromes despite extensive pleiotropy observed across major psychiatric 

disorders45. As participants in the ABCD Study approach adulthood, and psychopathology 

becomes further differentiated, it will be of interest to follow whether disease-specific 

polygenic models account for more variance in symptoms than they do at the outset of 

adolescence. Prospectively observing when, and in whom, clinical sequelae of generalized 

(NDV) loading are supplanted by disorder-specific PGSs may ultimately lead to refined 

predictive algorithms for youth who show nonspecific early symptoms.
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NDV PGSs were derived empirically from pooled GWAS data that cover eight psychiatric 

disorders, and represent overlapping genetic risk among ADHD, ASD, Tourette syndrome 

and MDD. While the first three of these disorders are typically diagnosed in childhood, 

MDD also presents frequently in children, with approximately one-fifth of children aged 

12–17 reporting a major depressive episode46. Compared with later in adolescence, early 

childhood depression reflects stronger genetic overlap with ADHD, and more frequently 

co-occurs with language and communication traits seen in autism47. Further, MDD PGSs 

derived from adult-sample GWASs consistently associate not only with internalizing 

symptoms, but also with ADHD, social problems and overall psychopathology in other 

large cohorts of children29. GWASs of MDD also implicate NDV processes48. However, 

in the present results, NDV PGS predicted more variance in dimensional depression scores 

than did MDD PGS, and overall predicted more variance in most aspects of dimensional 

psychopathology compared with disorder-specific PGSs. Additional analyses suggested that 

NDV likely contributes to this range of symptoms in early adolescence through its effects 

on ‘p’, that is, a general factor of psychopathology, rather than through direct effects on 

differentiated symptoms— and thus suggest the possibility that these symptoms reflect 

common biological substrates that act downstream of NDV genes.

While genes annotated to NDV-associated variants are expressed throughout the brain, 

they are most strongly expressed within the fetal cerebellum. The role of the cerebellum 

in the emergence of psychopathology has received increased attention over the past two 

decades49–53. To our knowledge, relationships between cerebellar volumes and dimensional 

psychopathology have not previously been examined in the ABCD Study. Of note, the 

relatively high spatial variability of small cerebellar lobules across individuals necessitates 

the use of specialized, probabilistic atlases to resolve lobular volume artifacts54. For the 

present analysis, we used a cerebellar atlas that has been validated in children. Also, robust 

visual quality control of all individual MRI scans (Methods) enabled the elimination of 

scans with substantial artifacts that were not detected by standard quality control measures 

in Freesurfer, as well as inclusion of individual scan quality ratings for those images that 

were deemed sufficient for inclusion.

That NDV genes were preferentially expressed in the cerebellum echoes previous, smaller 

studies that found associations between cerebellar gray matter morphology and general 

psychopathology, norm-violating behaviors and psychosis through late adolescence51. In 

the present analysis, NDV scores predicted the same three measures of psychopathology 

above all other measures of genetic risk, and in the larger ABCD sample, more strongly 

predicted externalizing psychopathology and psychosis than internalizing psychopathology 

at both timepoints. Further, while cerebellar morphometry negatively predicted total 

psychopathology, replicating findings of several studies51,52, the present analyses also 

demonstrate that volumes within specific cerebellar subregions more strongly predicted 

externalizing and psychotic symptoms compared with total symptoms.

Altered cerebellar development has been linked to numerous neuropsychiatric syndromes 

in children55, but as in other previous work56, in the present study structural variation 

in extracerebellar cortical and subcortical regions also associated with psychopathology 

scores, as did variation in NDV genes expressed in these regions. Effects of fetally 
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expressed NDV genes within the cerebellum may propagate over space and time, including 

via extracerebellar regions that contribute to psychopathology risk. The cerebellum is 

synaptically and functionally coupled to all major brain networks via cerebellum– thalamic– 

cortical loops42 and modulates gain for motor, cognitive and emotional function57. 

Disruption in cerebellar connectivity to cortical regions has been implicated in SCZ and 

autism58,59. It has been proposed that fetal cerebellar development influences postnatal 

maturation of multiple cortical regions60. As such, disrupted fetal cerebellar development 

may exert downstream effects on cortical maturation that are relevant to psychiatric 

symptoms60,61. In support of this idea, we found that reduced volumes in somatomotor 

regions of the cerebellum (for example, lobules I–V, VIII), as well as in networked regions 

within the sensorimotor cortex, associated with increased externalizing symptoms, a pattern 

consistent with previous findings62. The present results implicate NDV genes in this process, 

in particular to the extent that their expression in fetal cerebellum influences externalizing 

symptoms through downstream effects on cortical development. Longitudinal follow-up 

of ABCD participants may identify structural and functional variations in cerebellar and 

networked regions that associate with, and potentially precede, changes in symptoms over 

time.

The present analyses did not identify relationships between NDV scores and gray matter 

volumes, despite the statistically robust relationships between NDV PGSs and dimensional 

psychopathology measures. Recent large-scale MRI studies have highlighted the need for 

very large sample sizes to avoid type I and type II error in relating psychopathology 

to anatomical and functional brain variation63,64. Likewise, very large samples—possibly 

larger than ABCD—may be needed to link MRI indices and psychopathology with 

underlying genomic risk. Alternatively, as NDV genes tend to show peak cerebellar 

expression during fetal life, PGSs arising from these genes may track more closely with 

cerebellar volumes during fetal development than in childhood. However, the finding 

that cerebellar gray matter volumes cross-sectionally predicted psychopathology scores 

in early adolescence suggests the possibility that NDV gene expression during fetal life 

exerts developmentally downstream effects on cerebellar structure that become relevant to 

emerging psychopathology after birth. Future studies that provide detailed spatiotemporal 

gene expression data from human cerebellum, drawing from recent studies in mice65, 

may enable closer triangulation among intracerebellar NDV expression, cerebellar lobule 

volumes and emergent pediatric psychopathology.

Several limitations of the current study may be addressed in future analyses. First, the 

largest gene expression dataset used in our analysis (GTEx v8), which we used to identify 

the cerebellum as a region-of-interest, is derived largely from adults38. Therefore, although 

NDV genes are likely relevant for cerebellar function, we are unable to determine with 

the same confidence their importance to cerebellar development. However, as described 

above, top (FDR-significant) NDV genes are expressed significantly more during the 

prenatal period than after birth, suggesting that they have some relevance to early cerebellar 

development. Related to this issue, with the two available gene expression datasets (GTEx 

v8 and BrainSpan), we are limited in the number of brain regions in which we can 

investigate the expression patterns of genes. Thus, we are unable to systematically assess the 

relative importance of NDV gene expression in the cerebellum compared with other regions 
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of the brain. Although the ABCD Study itself is designed to reproduce the diversity of the 

US population, our current genomic analyses were restricted to non-Hispanic participants 

of European descent. This approach was necessitated by the risk of population stratification 

artifacts when pooling data from participants of mixed ancestry. The field of psychiatric 

genomics is making strides towards greater diversity66, but sample sizes of both non-

European discovery GWAS datasets and related analyses in ABCD are likely underpowered 

at present. As such, the generalizability of the present genomic findings to non-European 

ancestry individuals remains limited. Finally, the data reported here are limited to early 

adolescence, rely to some extent on parent-reported data and exclude children with serious 

mental illness (for example, SCZ, severe autism). Our analysis of 2-yr follow-up data 

(ages 11–12) showed similar patterns of association with PGSs to those seen in ages 9–10. 

Nevertheless, the next several years of life, characterized by substantial biological and social 

changes, will likely bring about further phenotypic differentiation. Continued observation of 

the ABCD participants will enable a fuller view of the dynamics of psychopathology over 

adolescence, and a more complete understanding of how emergent psychopathology tracks 

with genetic variation and neuroanatomical development.

Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41593-023-01321-8.

Methods

ABCD Study

The ABCD Study includes data from 11,875 children aged 9–10 at baseline with the 

intention of following them through adolescence. All data were obtained from the National 

Institute of Mental Health (NIMH) Data Archive (NDA), Curated Annual Release 4.0 using 

the NDA Download Manager Beta (v.1.39.0). General inclusion and exclusion criteria for 

the ABCD Study are described elsewhere67,68. In brief, 9–10-yr-old children were recruited 

from the community, had no contraindications to MRI scanning and were excluded if they: 

were not fluent in English; had a history of major neurological disorders, traumatic brain 

injury or extreme prematurity; or carried a diagnosis of SCZ, moderate-to-severe ASD, 

intellectual disability or substance use disorder. Institutional Review Board (IRB) approval 

for the ABCD Study is described by Auchter et al.69. Most ABCD research sites cede 

approval to a central IRB at the University of California, San Diego, with the remainder 

obtaining local IRB approval. All parents provided written, informed consent and all 

youth provided assent. Unless explicitly noted, all of the below methods describe analyses 

performed with ABCD data. For instructions on gaining access to ABCD data, refer to this 

page: https://nda.nih.gov/nda/access-data-info.html. To request access to Generation R data, 

researchers can email: datamanagementgenr@erasmusmc.nl.
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Measures of psychopathology

Data from the CBCL and distress scores from the PQ-BC were analyzed to assess 

psychopathology at baseline (ages 9–10) and year 2 follow-up (ages 11–12). The 

CBCL is reported by parents and consists of 11 scales, three of which capture broader 

psychopathology—Total, Internalizing and Externalizing— and eight of which capture more 

specific syndromes of psychopathology—anxious/depressed, withdrawn/depressed, somatic 

complaints, social problems, thought problems, attention problems, rule-breaking behavior 

and aggressive behavior. The PQ-BC is a modified version of the Prodromal Questionnaire 

Brief and establishes the presence or absence of symptoms of prodromal psychosis as 

reported by the child. A rating of distress for each endorsed item is also recorded on a 

scale of 1–5. For the present analysis, total distress scores were calculated by summing the 

distress and endorsement scores for all 21 questions for each individual. In Generation R, 

comparable measures of psychopathology were used including the same eight syndrome 

and three broadband CBCL scales. Because the PQ-BC was not collected in Generation R, 

consistent with a previous study23, psychotic experiences were evaluated using two items on 

auditory and visual hallucinations from the Youth Self-Report34: (1) ‘I hear sounds or voices 

that are not there according to other people’ and (2) ‘I see things that other people think are 

not there’. Children responded on a three-point scale: not at all (0), a bit (1) or clearly (2). 

The sum score of the two hallucination items was calculated, and children were grouped into 

three different categories: no symptoms (0 points), mild symptoms (score of 1 point on at 

least one of the items) and moderate-to-severe symptoms (score of 2 points on at least one of 

the items).

Bifactor analyses of CBCL

Bifactor analyses followed from Clark and colleagues33, who analyzed baseline CBCL data 

from the ABCD Study. Factor loadings from two models, GFP-2 and GFP-3, were used to 

provide scores for nine-factor (‘p’ as well as residualized eight CBCL syndrome-specific 

scales) and three-factor (‘p’ as well as residualized CBCL Internalizing and Externalizing 

scales) models, respectively, for each ABCD participant based on their age 9–10 individual 

item data.

Quality control and imputation of genetic data

Genotype data from nontwin individuals of self-reported European ancestry were retained 

for analysis. To minimize family-level confounders, one child was randomly selected for 

analysis from every sibling pair. All subsequent pre- and postimputation quality control 

analyses were conducted using PLINK v.1.9. SNPs with a minor allele frequency (MAF) 

of less than 1%, with missingness greater than 5% and with Hardy–Weinberg equilibrium 

less than 1 × 10-5, were filtered. Variants in linkage disequilibrium were pruned using 

a window size of 50 kilobases (kb), a step size of 5 kb and an R2 threshold of 0.5. A 

principal components analysis was then run to calculate the first four principal components 

and to filter individuals who fell outside 4 s.d. from the mean of each of the four principal 

components, calculated in a European reference population via the 1000 Genomes Project70. 

Individuals were removed who had an identity-by-descent value greater than 0.125, a sex 

mismatch or who were missing more than 5% of their data. Shapeit v.2 was used for 
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prephasing, with genotyping data from the 1000 Genomes project used as a reference panel. 

IMPUTE v.2 was used for imputation.

Polygenic scoring analysis using ABCD data

After imputation, variants were filtered for an INFO score of less than 0.9, a MAF < 0.01 

and missingness >0.05. PGSs were calculated by summing the loci associated with risk of 

a particular trait weighted by their effect size on that trait. Using PRSice-2 (ref. 71) and an 

R2 threshold of 0.1 to clump SNPs in linkage disequilibrium, PGSs were calculated for eight 

specific psychiatric disorders—ADHD, ASD, anorexia nervosa, BIP, MDD, OCD, SCZ and 

Tourette syndrome—the summary statistics of which were obtained from the PGC and 

can be found here: https://www.med.unc.edu/pgc/download-results/. These disorders were 

selected in line with the recent PGC Cross-Disorder Group (CDG) paper, which identified 

cross-trait risk loci across these eight disorders21. Following up on further analyses from 

the CDG, PGSs were also derived from three latent factors that together accounted for 

59% of the genetic variation among the eight neuropsychiatric disorders. A liberal P value 

inclusion threshold of 1.0 was selected for subsequent PGS analyses to include all SNP 

effects and to be consistent across the dimensions of psychopathology tested; however, 

predictive power (represented as R2 change) at each inclusion threshold can be seen in Fig. 

2, Supplementary Figs. 1 and 2 and Extended Data Fig. 2c,d. To determine whether PGS 

effects on psychopathology were driven by GWAS discovery sample sizes, we plotted each 

GWAS sample size on the corresponding PGS effect estimate from models regressing CBCL 

Total on PGS (Supplementary Fig. 5).

Sensitivity analysis using PGSs calculated with PRS-CS

As a sensitivity analysis, we regenerated PRSs using a Bayesian approach (PRS-CS32). 

Due to the relatively small sample sizes (<200,000) and high polygenicity of the tested 

psychiatric traits, ϕ, the global shrinkage parameter, was set at 0.02 for all traits except 

CROSS, for which ϕ was learned from the data. The remainder of the parameters were 

kept at the default setting. In PLINK, the resultant posterior effect sizes were applied 

to individual-level genotype data to generate PGSs for each subject. Results from these 

analyses are reported in Supplementary Table 5.

GenomicSEM analysis to infer latent factors of major psychiatric disorders

The GenomicSEM package in R was used for factor analyses and subsequent calculations 

of summary statistics of each factor. To verify the genetic architecture outlined by the CDG, 

a genetic covariance matrix (S) and sampling covariance matrix (V) were calculated for 

the eight neuropsychiatric disorders by the linkage disequilibrium score regression (LDSC) 

method of the GenomicSEM packages. The S matrix was then used for an exploratory factor 

analysis with three factors and promax rotation. Excluding factor loadings of less than 0.2, 

a latent structure was identified that accounted for 59% of the genetic variation and fell into 

three categories as previously defined by the CDG: an NDV factor comprising ADHD, ASD, 

MDD and Tourette syndrome; an obsessive/compulsive factor (COMP) comprising anorexia 

nervosa, OCD and Tourette syndrome; and an MP factor comprising BIP, MDD and SCZ. 

A follow-up confirmatory factor analysis with three correlated factors suggested a good 

model fit with χ2(15) = 78.88, Akaike information criteria (AIC) = 120.88, comparative 
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fit index (CFI) = 0.940, standard root mean square residual (SRMR) = 0.077. With three 

latent structures having been identified in three clusters of psychiatric disorders, common 

factors of each cluster were regressed onto each SNP via the commonfactorGWAS function. 

Thus, a set of summary statistics, representing SNP effects on their respective factors, were 

generated for the NDV, COMP and MP factors separately. Before generating factor summary 

statistics, all PGC summary statistics were standardized and preprocessed via the sumstats 

function.

Gene-based association analyses

Gene-based association analyses were performed through MAGMA35 via FUMA’s37 

pipeline, which is a web-based software. SNPs within a window of 35 kb upstream and 10 

kb downstream of a gene were annotated to their corresponding genes. With the European 

1000 Genomes Project Phase 3 data as a reference panel and P values from summary 

statistics of each of the three gSEM factors, the effect and statistical significance of each 

gene on its corresponding phenotype were calculated using an SNP-wise mean model, which 

uses the mean χ2 statistic of SNPs in a gene to calculate the effect of the gene35. Gene 

expression data from GTEx v.8 were used for tissue specificity analyses.

GO analyses

Using PANTHER72, a web-based software, GO analyses were performed on two sets of 

NDV genes: (1) FDR-significant genes (N = 68) and (2) top 5% most significant genes (N 
= 952, Q < 0.3). Specifically, we used PANTHER’s overrepresentation test73 with Fisher’s 

exact test for P value calculation to test which GO terms were overrepresented in each set 

of genes. P values were corrected for multiple comparisons with FDR. Three classes of GO 

terms were tested: cellular components, which identifies cellular locations in which products 

of genes of interest are active; molecular function, which defines the biochemical activity of 

gene products; and biological process, which refers to the process to which a gene product 

contributes74. The FDR-significant set of genes (N = 68) yielded no significant results, and 

thus we explored a larger set of genes (N = 952) using PANTHER. In addition, given the 

likely role of synaptic processes in the etiology of psychopathology6,7,75,76, we investigated 

the initial set of 68 FDR-significant genes using SynGO, a web-based GO software with 

gene annotations specifically related to synapse biology36.

Developmental gene expression trajectories of psychiatric risk genes

Using data from the BrainSpan Atlas of the Developing Brain, expression levels were 

assessed for genes that were identified by the MAGMA annotation analyses and that 

statistically significantly contributed risk to the gSEM-derived latent variable (Q < 0.05). For 

top NDV (N = 68) and MP (N =2,751) genes, mixed models were used to identify structures 

that showed differential gene expression patterns before and after birth. Given within-gene 

dependence of expression, each gene was allowed its own intercept; likewise, each donor 

was allowed to have their own intercept to preserve within-donor relationships. The main 

effect of developmental time window (postnatal = 0, prenatal = 1) on expression was used 

to determine pre- and postnatal differential expression within each brain structure. See the 

formula below modeling the effect of developmental time window on gene expression of 

gene i within donor j:
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expij = β0ij + β1postnatal + εij

β0ij = γ00 + μ0ij

Given results from MAGMA’s gene property analysis via the FUMA pipeline pointing 

to the importance and relevance of the cerebellum to NDV genes, the main structure of 

interest was the cerebellum (CBC). In addition, five other brain structures were tested: 

amygdala (AMY), medial dorsal thalamus (MDTHAL), striatum (STR), hippocampus 

(HIP) and neocortex (NCX), which was an aggregate of regions: primary auditory cortex 

(A1C), dorsolateral prefrontal cortex (DFC), inferior parietal cortex (IPC), inferolateral 

temporal cortex (ITC), primary motor cortex (M1C), rostral medial prefrontal cortex (MFC), 

orbital frontal cortex (OFC), primary somatosensory cortex (S1C), caudal superior temporal 

cortex (STC), primary visual cortex (V1C) and ventrolateral prefrontal cortex (VFC), in 

addition to occipital neocortex (Ocx), parietal neocortex (PCx), temporal neocortex (TCx) 

and primary motor-sensory cortex (M1C-S1C) as defined on the Allen Brain Atlas site 

(atlas.brain-map.org). BrainSpan data can be downloaded here: https://www.brainspan.org/

static/download.html.

pPGSs

All genes (N = 17,604) were partitioned into those with prenatal peak expression, postnatal 

peak expression and continuous expression (showing no expression differences between 

pre- and postnatal timepoints), using independent samples t-tests that contrasted mean pre- 

versus postnatal expression. After correction for multiple comparisons with FDR (number of 

comparisons = 17,604), genes with a significant positive estimate were classified as prenatal 

genes, with a significant negative estimate as postnatal genes and with an insignificant 

positive or negative estimate as continuous. These tests were performed within each of the 

aforementioned six regions to identify prenatally, postnatally and continuously expressed 

genes within each brain region. Using MAGMA’s SNP-to-gene annotation data to convert 

gene-level data back to SNP-level data, SNPs were classified in the same way (prenatal, 

postnatal and continuous within six regions). These data were then used to generate subsets 

of NDV summary statistics and subsequently PGSs which represent the additive effects 

of SNPs that confer risk to the NDV and which are also associated with genes that are 

expressed differentially or non-differentially between fetal and child/adult timepoints. These 

analyses resulted in 18 new PGSs (3 (pre-, post-, continuous) × 6 regions (CBC, AMY, 

MDTHAL, STR, HIP, NCX)). Psychopathology scores were then regressed onto these 

PGSs, allowing for an inspection of the importance of timing of expression on emergent 

psychopathology in pre-adolescence.

Polygenic scoring analysis using Generation R data

Using imputed genotype data from previous Generation R studies77 and summary statistics 

from the gSEM output generated from the present study, PGSs were calculated for each of 

the three gSEM factors.
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MRI data processing-FreeSurfer

In the ABCD Study, structural T1 images were acquired on 3T scanners (1 × 1 × 1-mm3 

resolution)78. To correct low frequency intensity nonuniformity, also known as a bias field, 

we used the N4 bias field correction algorithm79. Whole brain processing and analyses, 

including generation of global and region-of-interest (ROI) volumes, were conducted using 

FreeSurfer v.7 (http://surfer.nmr.mgh.harvard.edu/).

MRI data quality control

Of 11,875 participants, 160 did not have T1-weighted images available to download. A 

total of 11,715 images were downloaded, 451 of which were flagged to receive clinical 

consultation and thus were excluded from visual quality control, and one of which failed 

FreeSurfer preprocessing. The remaining 11,263 images (4,242 from unrelated European 

participants (‘uEur’)) were individually assessed and given a rating from a scale of 1–5. The 

rating criterion was created based on degree of manual edits needed. A rating of 1 was given 

to scans that required only minor manual edits that could be completed within approximately 

0.5 hours (n = 4,630 total, 1,610 uEur). A rating of 2 was given to scans that required several 

manual edits but could still be completed within approximately 1–2 h (n = 4,063 total, 1,636 

uEur). A rating of 3 was given to scans with a larger number of manual edits needed that 

would take more than 3–4 h (n = 1,383 total, 632 uEur). A rating of 4 was given to scans 

with severe motion and other types of artifacts that might not be possible to fix with manual 

edits (n = 219, 48 uEur). The remainder of the scans were unusable, had gross anatomical 

abnormalities or had cysts > 1 cm3 (n = 968 total, 87 uEur). Only images that were rated as 

1, 2 or 3 (n = 10,076 total, n = 3,878 uEur) were used in subsequent analyses. For cerebellar 

subregion analyses, subjects who fell outside of 4 s.d. of the mean total cerebellum volume 

(n = 19) were excluded from analyses. Furthermore, to apply as stringent quality control as 

possible, we included a Freesurfer-generated measure of scan quality in all neuroimaging 

models: Euler number80, which indexes the number of topological defects, or surface holes, 

in Freesurfer’s reconstruction of the cortical surface and which has been shown previously to 

act as a metric of scan quality81. The number of surface holes was used as a fixed effect in 

all imaging analyses.

Cerebellum segmentation with ACAPULCO

We used ACAPULCO for cerebellum subregion analysis41. ACAPULCO was selected 

among other cerebellum parcellation software due to its previous validation in pediatric 

cohorts82. With ACAPULCO, FreeSurfer-preprocessed T1 images automatically went 

through N4 bias field correction, Montreal Neurological Institute (MNI) registration, 

cerebellum parcellation (the program first predicts a bounding box around the cerebellum, 

crops out the cerebellum with this bounding box, and uses a modified U-Net to parcellate it 

into subregions) and transform back to the original space. Then, volume for each subregion 

was calculated.

Statistical analyses

All statistical analyses were performed for ABCD data with R 3.6.3 and for Generation R 

data with SPSS. All statistical tests were two-sided.
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Correlation between measures of psychopathology—Pearson r correlation 

coefficients were calculated for relationships between the 12 measures of psychopathology 

(11 CBCL scales and PQ-BC) and presented as a correlation matrix (Fig. 1). The same was 

done in Generation R, although a different metric of psychosis spectrum symptoms was 

included instead of the PQ-BC, which was not collected in Generation R.

Associations between PGS and dimensional psychopathology—Due to variance 

both within and between the 22 ABCD Study sites, linear mixed effects models (lme4 

package) were used to adjust for site as a random effect. In models investigating the 

effects of eight disorder-specific, one broad cross-disorder and three gSEM-derived PGSs on 

indices of psychopathology, age at baseline, sex and the top five principal components were 

included as fixed effects and site as a random effect. In Generation R, because data were 

collected from one site only, simple linear regressions (that is, without random effects) were 

used to calculate main effects of the three gSEM-derived PGSs, controlling for age, sex and 

the top five principal components.

PGS associations with baseline and emergent clinically meaningful 
psychopathology—To determine the relevance of NDV polygenic risk on the emergence 

of psychopathology relative to other disorder-specific and cross-disorder scores, subjects 

were partitioned into quintiles based on their PGSs and coded according to presence of 

psychopathology above the clinical cutoff for CBCL Total (≥64)34. In baseline models 

(Extended Data Fig. 3), two groups were identified: one with CBCL Total scores at or 

above the clinical cutoff at baseline and another with scores below. In year 2 models, 

two groups were identified: one with CBCL Total scores at or above the clinical cutoff at 

year 2, but not baseline; another with scores below the cutoff at both baseline and year 

2. Logistic regression models were used to determine the odds of having clinical-range 

psychopathology (CBCL Total ≥ 64) given membership in the top versus bottom PGS 

quintile.

Associations between PGS, psychopathology and brain structure—In models 

including imaging and genomics data from unrelated participants of European ancestry 

with scan ratings of 1, 2 or 3, site and scanner type were included as random effects and 

additionally the number of surface holes (Euler number) was included as a fixed effect, 

as were age, sex and intracranial volume. In the broader imaging set, which included 

participants of multiple ancestry groups and also 2,820 sibling participants, PGSs and 

principal components were omitted, but family ID was included as an additional random 

effect, as well as Euler number as a fixed effect. The FDR was used to correct for multiple 

comparisons within each set of models, which were treated hierarchically. First, four global 

measures of gray matter volume (total gray matter, cerebellum total gray matter, cortical 

gray matter and subcortical gray matter) were each tested for association with four clinical 

scales (CBCL Total, Internalizing and Externalizing, as well as PQ-BC), and FDR was used 

to correct for 16 comparisons (Supplementary Table 16). For global gray matter volumes 

that showed significant associations with any clinical scale, follow-up tests were conducted 

that corrected for the total number of subregions and clinical scales (that is, 17 cerebellar 

subregions × 4 clinical scales = 68 comparisons, Supplementary Table 17; 68 cortical 
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regions × 4 clinical scales = 272 comparisons, Supplementary Table 18; 17 subcortical 

regions × 4 clinical scales = 68 comparisons, Supplementary Table 19). As a sensitivity 

analysis, subjects with a structural quality control rating of 3 were excluded from models, 

and thus associations between brain volumes and psychopathology were measured only in 

subjects with the highest quality scans (N = 8,658).

Proportion of variance explained by PGS—To determine the predictive power of 

each PGS, R2 changes were calculated for models predicting broadband CBCL scales and 

PQ-BC. First, changes in R2 at each PGS threshold were calculated by building an initial 

model consisting of covariates (without PGS of interest) and then a second model that 

included PGS as a predictor. The R2 values of the initial models were subtracted from those 

of the second models. Although the main PGSs of interest were at P-threshold (Pt) 1.0, these 

analyses were performed at each Pt. Next, to determine the relative predictive power of NDV 

scores compared with other disorder-specific and cross-disorder PGSs, two more models per 

PGS were built: the initial model included a PGS at Pt 1.0 and covariates; the second model 

added NDV PGS at Pt 1.0. The significance associated with the addition of NDV scores 

(that is, the P value of the NDV term in the model) is reported in Fig. 2c,d, Supplementary 

Fig. 1 and Supplementary Table 4. These same analyses were performed in Generation R 

(Supplementary Fig. 2, Extended Data Fig. 2c,d and Supplementary Table 8).

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting 

Summary linked to this article.
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Extended Data

Extended Data Fig. 1. Pearson correlations among dimensional psychopathology measures in 
ABCD genotyped subjects only.
(a, b) correlation matrix of psychopathology in genotyped males (top right of matrices) and 

females (bottom left of matrices) at ages 9-10 (n = 4,459; A) and 11-12 (n = 3,360; B).
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Extended Data Fig. 2. Relationship between gSEM-derived PGS and psychopathology in the 
Generation R cohort.
(a, b) Heatmaps showing uncorrected p-values from linear regression models regressing 

psychopathology on PGS covarying for age, sex, and top 5 principal components at age 9 

(n = 1,850; A) and 13 (n = 1,791; B). Asterisks indicate p<0.05 after False Discovery Rate 

correction for 36 comparisons (3 PGS x 12 measures of psychopathology). (c, d) Variance in 

CBCL Total accounted for by each gSEM-derived PGS. Uncorrected p-values (shown within 

the figure in black text near the y-max) represent the significance of the R2 change after 

adding NDV scores to base linear regression models including the respective PGS while 

covarying for age, sex, and top 5 principal components (Pt=1). All regressions represented 

are two-sided.
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Extended Data Fig. 3. Odds of clinical-range psychopathology (CBCL Total score ≥64) 
comparing the top to the bottom quintiles of PGS.
Red represents odds of clinical-range psychopathology scores at baseline (age 9-10; n = 

4,462). Blue represents odds of clinical-range psychopathology scores at year 2 (age 11-12) 

but not baseline (age 9-10; n = 3,152). Linear mixed effects regressions (two-sided) are 

adjusted for age, sex, and the top 5 genetic PCs as fixed effects, and site as a random effect. 

Points represent estimated odds ratios and error bars indicate 95% confidence intervals 

around those estimates.
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Extended Data Fig. 4. Regional gene expression patterns across the lifespan.
Depicted are expression patterns of 12 of the most significant NDV genes (q < 0.009) using 

gene expression data from BrainSpan. Each plotted line represents expression across the 

lifetime within 1 of 6 regions (one color per region; black represents expression in the 

cerebellum). Vertical black line represents the delineation between prenatal and postnatal 

timepoints. Abbreviations: AMY, amygdala; CBC, cerebellar cortex; HP, hippocampus; 

MD, mediodorsal thalamus; NCX, neocortex; STR, striatum. (a, SORCS3; b, DUSP6; c, 

SEMA6D; d, CUBN; e, CCDC71; f, SLC30A9; g, CCDC36; h, STGAL3; i, KLHDC8B; j, 
LAMB2; k, FOXP2; l, VSIG10).
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Extended Data Fig. 5. Effects of cortical ROI volumes on dimensions of psychopathology.
Linear mixed effects regressions (two-sided) are adjusted for age, sex, intracranial volume, 

and Euler number as fixed effects, and site, scanner, and family ID as random effects. 

Warmer colors represent more significant associations. P-values are corrected at the False 

Discovery Rate (number of comparisons = 272 [68 regions × 4 scales]).
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Fig. 1. Pearson correlations among dimensional psychopathology measures in ABCD and 
Generation R cohorts (11 CBCL scales, and PQ-BC distress scores), stratified by sex.
a,b, Correlation matrix of psychopathology in ABCD at ages 9-10 (n = 11,852) (a) and 

11-12 (n = 8,076) (b). c,d, Correlation matrix of psychopathology in Generation R at ages 9 

(n = 1,850) (c) and 13 (n = 1,791) (d). Males are represented in the top right of the matrices, 

and females in the bottom left. Colors represent strength of correlation coefficients (Pearson 

r) between respective variables (see legend). All correlations are statistically significant after 

correction for multiple comparisons using the FDR (Q < 0.05). Anx/dep, anxious/depressed; 

With/dep, withdrawn/depressed.
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Fig. 2. Prediction of dimensional psychopathology in unrelated young adolescents of European 
ancestry by disorder-specific and gSEM-derived PGSs.
a, Prediction of dimensional psychopathology by PGSs of eight syndrome-specific and 

three broadband CBCL scores, and PQ-BC scores at age 9–10 (n = 4,459), with warm (red/

yellow) colors indicating positive relationships and cool (blue) colors indicating negative 

relationships with PGS. White boxes indicate nonsignificant relationships (P > 0.05). 

Statistical significance and effect (coefficient) estimates are derived from linear mixed 

models regressing psychopathology on PGS covarying for age, sex and the top five genetic 

ancestry principal components as fixed effects and study site as a random effect. P values 

shown are uncorrected. Stars indicate tests that were significant after correcting for multiple 

comparisons using the FDR, Q < 0.05. b, Repeated analyses in the same participants 

at 11-12 (n = 3,360). c, Variance in total dimensional psychopathology (CBCL Total) 

explained by disorder-specific, cross-disorder and gSEM-derived PGSs in the ABCD sample 
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at ages 9–10 (n = 4,459), with color shades reflecting SNP inclusion thresholds (Pt). 

Uncorrected P values (shown within the figure in black text near the y-max) represent the 

significance of the R2 change after adding NDV PGSs to base models that included each 

other PGS and nuisance covariates (see above), at the broadest SNP inclusion threshold (Pt 

= 1). d, Repeated analyses in the same participants at ages 11-12 (n = 3,360). All P values 

were two-sided. AN, anorexia nervosa; TS, Tourette syndrome.
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Fig. 3. Spatial and temporal NDV gene expression.
a, SynGO expression profile of NDV genes indicating enrichment for synaptic (and 

primarily presynaptic) neuronal processes. b, Plot of results from MAGMA gene property 

regression (one-sided) analysis showing significance levels (uncorrected, log-transformed, 

y axis) of each region tested (x axis; n = 17,265 genes across 53 tissue types). Horizontal 

dashed line indicates Bonferroni-corrected significance threshold (0.05/53). c,d, Boxplots 

comparing prenatal with postnatal expression of FDR-significant (Q <0.05) MP (left; n = 

2,751 genes) and NDV (right; n = 68 genes) genes in the cerebellum (c) and neocortex (d). 

Boxes represent the interquartile range (IQR), lines within the boxes the median, whiskers 

the IQR × 1.5 and points the outliers. e, Spline graphs comparing NDV (blue) and MP (red) 

gene expression across the lifespan in the cerebellum. Shaded regions represent standard 

error. DCV, neuronal dense core vesicle; ECM, extracellular matrix of the synpatic cleft; ER, 

presynaptic endoplasmic reticulum; RPKM, reads per kilobase million; SV, synaptic vesicle.
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Fig. 4. Tissue-specific effects of NDV pPGS, based on gene sets with prenatal peak, postnatal 
peak or continuous gene expression, on dimensional psychopathology.
Linear mixed effects regressions are adjusted for age, sex and the top five genetic principal 

components (PCs) as fixed effects, and site as a random effect. Pvalues shown are two-sided 

and uncorrected. Stars indicate P <0.05 after FDR correction for 36 comparisons (3 pPGSs 

× 12 measures of psychopathology). White boxes represent nonsignificant relationships 

(P>0.05). Panels represent NDV pPGS partitioned based on expression in the cerebellum 
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(a), amygdala (b), hippocampus (c), medial dorsal thalamus (d), striatum (e) and neocortex 

(f).
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Fig. 5. Association between cerebellar volumes and dimensional psychopathology.
a, Cerebellar lobule map with legend for reference. Each lobule is represented by a different 

color (see key below). b, Effects of cerebellar volume on dimensional psychopathology: 

from left to right, CBCL Total, Internalizing, Externalizing and PQ-BC. Brighter reds 

indicate more significant associations with stars indicating regions that showed statistical 

significance after correction for multiple comparisons (FDR). Linear mixed effects models 

were adjusted for age, sex, intracranial volume and Euler number as fixed effects, and site, 

scanner and family ID as random effects. R/L, right/left; Ver, vermis.
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