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A B S T R A C T   

Physical activity is a protective factor against brain atrophy, while loss of brain volume could also be a deter
minant of physical activity. Therefore, we aimed to explore the bidirectional association of physical activity with 
brain structures in middle-aged and older adults from the UK Biobank. Overall, 3027 participants (62.45 ± 7.27 
years old, 51.3% females) had data at two time points. Hippocampal volume was associated with total (β=0.048, 
pFDR=0.016) and household (β=0.075, pFDR<0.001) physical activity. Global fractional anisotropy (β=0.042, 
pFDR=0.028) was also associated with household physical activity. In the opposite direction, walking was 
negatively associated with white matter volume (β=-0.026, pFDR=0.008). All these associations were confirmed 
by the linear mixed models. Interestingly, sports at baseline were linked to hippocampal and frontal cortex 
volumes at follow-up but these associations disappeared after adjusting for multiple comparisons (pall>0.104). In 
conclusion, we found more consistent evidence that a healthier brain structure predicted higher physical activity 
levels than for the inverse, more established relationship.   

1. Introduction 

The proportion of adults aged 60 years and older will increase by 
over a billion by 2050. Consequently, several adaptations across all 
sectors of societies (e.g., health and social care) are urgently needed to 
adapt to and prevent the increasing prevalence of age-rated diseases 
(WHO, 2017). 

Due to its multisystemic benefits, increasing physical activity levels 
is considered one of the most promising strategies to prevent diseases, 
improve quality of life, and reduce public health-care costs in older 
adults (Bull et al., 2020; Gopinath et al., 2018; Izquierdo et al., 2021). In 
contrast, the age-related decline in physical and mental capacity leads 
older adults to avoid physical activity, which results in higher rates of 
physical inactivity at these ages (Izquierdo et al., 2021). Altogether, the 
limited success in getting and keeping older adults physically active and 
the urgent need to increase physical activity levels at these ages 
emphasize the necessity of identifying factors that influence physical 
activity in older adults. In this line, previous studies observed that 

physical activity levels can be predicted by physical health indicators (e. 
g., physical functioning), other lifestyle behaviors (e.g., no smoking), or 
psychosocial factors (e.g., self-efficacy) (Koeneman et al., 2011). More 
recently, it has also been suggested that a healthier brain structure (e.g., 
gray/white matter volume) predicts a lower decline in physical activity 
levels in older people (Arnardottir et al., 2016; Hofman et al., 2022). In 
particular, we observed that larger total brain volume, gray matter 
volume, and white matter volume were associated with increased sports 
participation in older people from the Netherlands (Hofman et al., 
2022). Similarly, Arnardottir et al. found that total brain volume was 
positively associated with physical activity levels in older adults from 
Iceland (Arnardottir et al., 2016). A possible explanation for this might 
be that a healthier brain structure results in a stronger behavioral con
trol network, which positively affects the capacity to resist environments 
that tempt individuals to be physically inactive (Marteau and Hall, 
2013). For instance, older adults with higher working memory or 
cognitive flexibility might be more able to plan or prioritize physical 
activity routines in their daily lives. This is a theorized control network 
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associated with the prefrontal cortex that controls behavior and thought 
(Diamond, 2013). 

Even when optimal levels are not achieved, physical activity is 
associated with healthier cognitive aging (Erickson et al., 2022), which 
suggests that the association between physical activity and brain 
structure might be bidirectional. Specifically, several studies have 
explored the association between physical activity and brain volumes, 
particularly in the hippocampus (Erickson et al., 2019, 2009). However, 
the literature remains still controversial. For instance, a systematic re
view, based on observational studies, suggested that physical activity is 
associated with larger brain volumes (i.e., less brain atrophy) (Domingos 
et al., 2021). In contrast, a recently published meta-analysis of experi
mental studies found no significant effect of exercise interventions on 
brain volume changes among older adults (Gogniat et al., 2021). Con
cerning white matter microstructure, a longitudinal study suggested that 
better maintenance of time spent walking over a decade was associated 
with slower deterioration in global microstructural features of white 
matter over time (Best et al., 2017b). Contrary, we recently observed 
that higher levels of physical activity were not associated with better 
white matter microstructure over time (Hofman et al., 2022). 

Overall, studies examining the link between physical activity and 
brain structure are typically undertaken with the assumption of a uni
directional relationship between physical activity and brain structure, 
being lower levels of physical activity preceding or contributing to 
future brain atrophy. However, there remains the possibility of a bidi
rectional relationship. The confirmation of this bidirectionality might 
help to make policymakers more aware of the need for prioritizing 
effective interventions in this target group of older people. Additionally, 
exploring whether a higher volume in brain regions associated with 
executive function (e.g., frontal cortex) predicts more physical activity 
over time might shed light on the mechanisms linking brain structure 

with physical activity in older people. Therefore, this study aimed to 
investigate the bidirectional relationship between physical activity and 
brain structure, while considering potential differences between various 
physical activity domains and brain regions, in a cohort of older adults 
from the United Kingdom (UK). 

2. Methods 

2.1. Study design and participants 

This study used data from a large community-based cohort of UK 
Biobank, which enrolled 502,507 individuals aged 40 and 69 years 
across the United Kingdom (UK) between 2006 and 2010. All UK Bio
bank participants provided written informed consent, and the North 
West Multi-Center Ethics Committee granted ethical approval. Brain 
imaging began in 2014 and is still ongoing. From 2018 onwards, par
ticipants were reinvited for a second brain scan within two years after 
their initial scan. The first time participants attended the MRI assess
ment center was considered the baseline. Information about physical 
activity was obtained during both imaging visits. In the current study, 
we included all 3027 participants who had complete brain imaging and 
physical activity data at both time points (as of July 7, 2021; see  
Figure 1). 

2.2. Physical activity 

Information on the levels of physical activity was obtained through a 
leisure-time physical activity self-reported questionnaire (Chudasama 
et al., 2019; Paudel et al., 2023). To assess the level of physical activity, 
respondents indicated the duration (i.e., less than 15 min, between 15 
and 30 min, between 30 min and 1 h, between 1 and 1.5 h, between 1.5 

502485 unique participants in the UK 
Biobank

324 participants excluded because they 
had no physical activity data at first 

imaging visit.

43600 participants with brain volume 
data at the first imaging visit.

299 participants excluded because they 
had no physical activity data at first 

imaging visit.

3036 participants with brain volume data at 
second imaging visit.

2876 participants with DTI data at second 
imaging visit.

3027 participants with both 
physical activity and brain 

volume data at first and second 
imaging visits.

40524 participants with DTI data at the
first imaging visit.

9 participants excluded because they had 
no physical activity data at second 

imaging visit.

9 participants excluded because they had 
no physical activity data at second 

imaging visit.

2867 participants with both 
physical activity and DTI data at 
first and second imaging visits.

Fig. 1. Flow chart of participant inclusion (data available as of July 7, 2021). DTI= Diffusion tensor imaging. Participants at the second imaging visit are a sub
sample, which means they are not part of a drop-out. 
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and 2 h, between 2 and 3 h) and frequency (i.e., once in the last 4 weeks, 
2–3 times in the last 4 weeks, once a week, 2–3 times a week, 4–5 times a 
week, every day) they engage in: walking (not as a means of transport), 
strenuous sports, other exercises (e.g., swimming, cycling, keep fit, 
bowling), light do-it-yourself (DIY) activities (e.g., pruning, watering the 
lawn), and heavy DIY activities (e.g., weeding, lawn mowing, carpentry, 
digging). A total household physical activity score was calculated by 
adding the hours of light DIY and heavy DIY. In addition, a total physical 
activity score was calculated by adding the hours of walking, strenuous 
sports, other exercises, and household activities. Since the activities 
listed under ‘other exercises’ varied substantially in terms of the form of 
exercise and their physical strain, we did not include this category in our 
domain-specific analyses. 

2.3. Magnetic resonance imaging 

Participants were scanned at three centers with identical Siemens 
Skyra 3 T scanners using a standard 32-channel head coil (Littlejohns 
et al., 2020). Overall, T1, T2 FLAIR, and DTI images were used in this 
analysis. Details on UKB preprocessing and quality control pipelines can be 
found (https://git.fmrib.ox.ac.uk/falmagro/UK_biobank_pipeline_v_1). 

2.4. Image acquisition and processing 

T1-weighted images were obtained using an MPRAGE sequence: 
TR=2000 ms, TE=2.0 ms, 208 sagittal slices, flip angle=8◦, 
FOV=256 mm, matrix=256×256, slice thickness=1.0 mm (voxel size 
1×1x1mm). T2-weighted FLAIR imaging was additionally acquired with 
3D SPACE in the sagittal plane (resolution = 1.05×1 x 1 mm, field of 
view = 192×256×256 mm; inversion time = 1800 ms, repetition time 
= 5000 ms). Diffusion images were obtained using a spin-echo echo- 
planar sequence with 10 T2-weighted baseline volumes, 50b =

1000 s mm-2 and 50 b=2000 s mm-2 diffusion-weighted volumes, with 
100 diffusion-encoding directions and 2 mm isotropic voxels. 

Summary measures of brain structure (i.e., total brain volume, gray 
matter volume, white matter volume, white matter hyperintensity, 
hippocampal volume, frontal cortex volume, global fractional anisot
ropy [FA], global mean diffusivity [MD]) have been generated on behalf 
of UK Biobank (Alfaro-Almagro et al., 2018), and are available from UK 
Biobank upon data access application. Global brain volume measures 
were normalized for head size. Therefore, we did not adjust our analyses 
for other volumetric MRI measures such as intracranial volume. For a 
detailed description of the imaging protocol and pre-processing steps, 
please see Appendix 1. 

2.5. Covariates 

All models were adjusted for sex (Field 31); education, categorized as 
higher (college/university degree or other professional qualification) or 
lower (Field 6138) (Malik et al., 2021); ethnicity (Field 21000), cate
gorized as white/non-white; and age and body mass index (BMI) when 
participants attended for the first time to the MRI assessment center 
(Field 21003 and Field 21001, respectively). 

Fully adjusted models also included the following covariates assessed 
at baseline: diet quality (Fields 1309, 1319, 1289, 1299, 1448, 1438, 
1468, 1458, 1329, 1339, 1408, 1418, 1428, 2654, 1349, 1359, 1369, 
1379,1389, 3680), smoking status (Field 20116), and hypertension 
(Fields 4079–80), which were defined according to the LS7 score for 
ideal cardiovascular health (Malik et al., 2021). In addition, depression 
was defined by any of the ICD-10 codes (Field 41270) F32 (depressive 
episode), or F33 (recurrent depressive disorder). Cardiovascular disease 
was defined by any of the ICD-10 codes I20-I25 (coronary/ischaemic 
heart diseases), I46 (cardiac arrest), I48 (atrial fibrillation), I50 (heart 
failure), I60-I69 (cerebrovascular diseases) as well as algorithmically 
defined stroke outcomes (ischemic stroke, intracerebral hemorrhage, 
and subarachnoid hemorrhage; Fields 42006–42013) (Alaa et al., 2019). 

Diabetes was defined by ICD-10 codes E10–14 (Diabetes mellitus). 
Cancer was obtained from the cancer registry records and considering all 
ICD-10 cancer (’C’) code entries (Field 40005, 40006, 40008, 40009), 
except C44 (other malignant neoplasms of skin) (Ong et al., 2018). 

Lastly, dementia diagnosis was obtained from the algorithmically 
defined dementia outcomes (all-cause dementia, Alzheimer’s disease, 
vascular dementia, frontotemporal dementia; Fields 42018–42025) or 
any of the ICD-10 diagnosis codes F00 (dementia in Alzheimer’s dis
ease), and F01 (vascular dementia). No participants were diagnosed 
with dementia when baseline and follow-up measures were obtained. 
Therefore, the dementia variable was not used as a confounder in this 
study. 

2.6. Statistical analysis 

Statistical analyses were performed using R version 4.2.1 (The R 
Foundation for Statistical Computing, Vienna, Austria). The bidirec
tional associations of total physical activity and domain-specific phys
ical activity with brain tissue volumes and white matter microstructure 
were examined using a cross-lagged panel model approach using the 
Lavaan package (version 0.6–12) (Rosseel, 2012). 

In these analyses, all associations were adjusted for each other: i.e., 
analyses are adjusted for the underlying associations of physical activity 
over time (autoregressive path, βAR-PA), brain variables over time 
(autoregressive path, βAR-MRI), the cross-sectional paths (βCS-Baseline), and 
the prospective mutual associations that represent the bidirectional as
sociations between physical activity and brain variables: the cross- 
lagged pathways βCL-1 and βCL-2. These path analyses generate stan
dardized structural regression coefficients (i.e., per standard deviation 
change) that can be directly compared to assess the direction of the 
association between physical activity and brain structure (Hofman et al., 
2022; Vitezova et al., 2015). To preserve all available data (missing data 
in baseline covariates ≤ 10%, except for diet quality: 20% and hyper
tension: 30%), we used maximum likelihood with robust standard errors 
(MLR) to fit the models, as implemented in Lavaan (Rosseel, 2012). This 
is a standard approach to prevent listwise deletion of participants with 
missing data (Rosseel, 2012). 

According to the literature (Hofman et al., 2022), we assessed the 
associations between total physical activity and brain structure adjusted 
for age, sex, educational level, national origin, and BMI (model 1). In the 
second model, we additionally adjusted for other behaviors (i.e., diet 
quality and smoking) and diseases (i.e., hypertension, cancer cardio
vascular diseases, diabetes, and depression). To adjust for multiple 
comparisons, we used false discovery rate based on the 
Benjamini-Hochberg method (Benjamini and Hochberg, 1995). We 
adjusted each pathway for a total of eight tests (i.e., 6 measures of brain 
volumes and 2 measures of white matter microstructure). 

To test the robustness of the analyses to a specific statistical model, 
associations that showed a significant association after adjusting for 
multiple comparisons in the cross-lagged panel model were re-assessed 
by using linear mixed-effects models with random intercepts. Follow-up 
time in years after baseline measurement was used as the time variable. 
A more detailed description of the linear mixed-effects modeling 
approach can be found in Appendix 2. As both modeling types have 
strengths and limitations (Lucas, 2023), linear mixed-effects models 
were used to investigate the robustness of our findings (Lawlor et al., 
2016). In particular, linear mixed-effects models do provide a more 
explicit measure of within-subject change, equivalent to a change score. 

As a sensitivity analysis, we ran the models excluding those in
dividuals who were less able to perform physical activity (defined as 
those who were by their doctor restricted in physical activity due to 
heart condition or chest pain felt during physical activity) (Field 
6014–6015). In post-hoc exploratory analyses, we tested first whether 
the bidirectional significant associations differed between younger (<
median age: 63 years) and older adults (>median age: 63 years), by 
performing multi-group analyses. In addition, we tested whether the 
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associations between physical activity and regions-of-interest volumes 
(i.e., hippocampus and frontal cortex), remained stable after adjusting 
for intracranial volume. Lastly, since people with lower hippocampal 
volume could have more difficulty recalling their physical activity levels 
and in turn, report it less accurately, we checked whether visual decla
ration memory, assessed by the Pairs Memory Test at the first imaging 
visit (Fawns-Ritchie and Deary, 2020), was associated with total phys
ical activity at the same time point (accounting for age, age2, sex, edu
cation, and intracranial volume). 

3. Results 

The mean age of the study population was 62.45 ± 7.27 years at 
baseline, and 64.78± 7.22 at follow-up (Table 1). In total, 51.3% of the 
participants were female, and the mean time between visit 1 and visit 2 
was 2.1 years. At baseline, participants reported a total physical activity 
of 6.51 ± 5.88 h per week, of which walking was the most prevalent 
(2.45 ± 3.05 h per week). At follow-up, participants reported a total 
physical activity of 6.39 ± 5.95 h per week. Overall, participants 
decreased their physical activity levels at follow-up in all domains 
except for walking which increased (see Table A.1). The subsample of 
imaged participants had a healthier lifestyle and was less often diag
nosed with chronic diseases than the non-imaged participants (Lit
tlejohns et al., 2020). Notably, compared with the general population, 
participants of the UK Biobank were less likely to be obese, smoke, drink 
alcohol, and report health conditions (Fry et al., 2017). 

Results of the cross-lagged models exploring the bidirectional asso
ciation between brain structure variables and total physical activity are 
presented in Table 2, adjusting for age, sex, educational level, national 
origin, BMI, diet quality, smoking, hypertension, cancer, cardiovascular 
diseases, diabetes, and depression (model 2). Our results indicated that a 

lower burden of white matter hyperintensity (β=-0.040, pFDR=0.016), 
and greater hippocampal volume (β=0.048, pFDR=0.016) at baseline, 
were associated with higher total physical activity levels at follow-up. 
Results were similar for model 1 (including age, sex, educational level, 
ethnicity, and BMI; Table A.2). Only the association between hippo
campal volume at baseline and total physical activity at follow-up was 
confirmed by linear mixed model (β=0.019, p=0.016) (Table A.3). 

Fully adjusted associations of domain-specific physical activity and 
brain structure indicators are presented in Table 3 (model 2). Contrary 
to our hypothesis, higher levels of walking at baseline were negatively 
associated with white matter volume at follow-up (β=-0.026, 
pFDR=0.008). This association was confirmed by linear mixed model 
(β=-0.016, p=0.001) (Table A.3). In line with our hypothesis, a positive 
association of strenuous sports with hippocampal volume (β=0.011, 
p=0.027) and frontal cortex volume (β=0.011, p=0.013) was observed. 
These associations disappeared after adjusting for multiple comparisons 
(pFDR>0.1). Results were similar for model 1 (see Table A.4). 

Brain structure at baseline was also associated with physical activity 
domains at follow-up. In particular, our results from our cross-lagged 
models indicated that larger hippocampal volume (β=0.075, 
pFDR<0.001), frontal cortex volume (β=0.043, pFDR=0.037), and global 
FA (β=0.042, pFDR=0.028) were positively associated with higher 
household activities levels at follow-up (Table 3). Results were similar 
when using model 1 (Table A.4). The association of hippocampal vol
ume (β=0.025, p=0.006) and Global FA (β=0.029, p=0.010) with 
household physical activity was confirmed by linear mixed model, while 
the association with frontal cortex volume and household physical ac
tivity was not (β=0.012, p=0.207). 

Autoregressive coefficients are shown for total physical activity and 
physical activity domains in Table A.5 and Table A.6, respectively. In 
addition, our most robust findings have been graphically described in  
Table 4. 

In our sensitivity analyses, we observed results were similar when we 
excluded individuals who were less able to be physically active (defined 
as those whose doctors restricted physical activity due to heart condi
tions or chest pain felt during physical activity; Table A.7). Lastly, in 
post-hoc exploratory analyses, we observed that the association of hip
pocampal volume with total physical activity were moderated by age. In 
our stratified analyses, hippocampal volume was associated among 
those who were older (β=0.048, p=0.030), but not among those who 
were younger (β=0.035, p=0.097). All the associations that we found 
between physical activity variables and hippocampal and frontal cortex 
volumes remained similar after adjusting for intracranial volume in the 
models. Lastly, visual declaration memory was not associated with total 
physical activity at baseline (β=0.046, p>0.05). 

4. Discussion 

4.1. Main findings 

This study aimed to explore the bidirectional relationship between 
physical activity and brain structure in a cohort of older adults from the 
UK. Overall, there seems to be a bidirectional association between 
physical activity and brain structure in middle-aged and older adults. 
However, we found more consistent evidence that a healthier brain 
structure predicted higher physical activity levels than for the inverse, 
more established relationship (higher physical activity predicted a 
healthier brain structure). Notably, the association between brain 
structure and physical activity levels seemed to be driven by household 
activities, which suggests people with a healthier brain structure are 
more able to deal with their active daily routines. This association is 
particularly relevant in older adults. In line with previous literature, we 
also observed that higher levels of strenuous sports predicted a lower 
decrease in hippocampal and frontal cortex volume over time, but this 
association disappeared after adjusting for multiple comparisons and 
needs to be confirmed by future studies. Lastly, there was a paradoxical, 

Table 1 
Study sample characteristics at baseline (n=3027).   

Mean/% SD 

Sex     
Women (%)  51.3   
Age, years  62.45  7.27 
Education (%)     
Low  46.6   
High  53.4   
National Origin (%)     
British  94.9   
Other than British  5.1   
Body mass index, kg/m2  26.27  4.18 
Adherence to dietary guidelines (%)     
Poor  22.8   
Intermediate  76.4   
Optimal  0.8   
Hypertension (%)     
yes  11.8   
Cancer (%)     
yes  11.0   
Cardiovascular diseases (%)     
yes  8.7   
Diabetes (%)     
yes  3.1   
Depression (%)     
yes  2.9   
Smoking (%)     
Never  65.7   
Former  31.2   
Current  3.0   

Abbreviations: SD = Standard Deviation. no. =Number of participants. 
*Note: 160 participants had no data on DTI but they were included in analyses of 
brain volume. Low education includes A levels/AS levels or equivalent, 0 levels/ 
GCSEs or equivalent, CSEs or equivalent, and NVQ or HND or HNC or equiva
lent. High education includes college or university degree, and other profes
sional qualifications (e.g., nursing, teaching). 
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Table 2 
Bidirectional associations between total physical activity and brain structure based on cross-lagged panel models.   

Physical activity → Brain Brain → Physical activity Cross-sectional Fit measures  

β CL-1 p pFDR β CL-2 p pFDR βCS-Baseline p CFI RMSEA 
Total physical activity 
Brain volumes (n=3027) 
Total brain volume -0.000 (-0.010,0.009) 0.971 0.971 0.017 (-0.018,0.053) 0.343 0.457 0.016 (-0.018,0.043) 0.416 0.995 0.024 
Gray matter volume 0.012 (0.001,0.022) 0.033 0.264 0.003 (-0.034,0.041) 0.866 0.866 0.003 (-0.026,0.030) 0.878 0.995 0.023 
White matter volume -0.012 (-0.028,0.004) 0.130 0.331 0.020 (-0.011,0.053) 0.208 0.333 0.022 (-0.015,0.055) 0.208 0.993 0.022 
White matter hyperintensity -0.012 (-0.030,0.006) 0.194 0.331 -0.040 (-0.075,-0.014) 0.004 0.016 -0.049 (-0.067,-0.013) 0.004 0.990 0.024 
Hippocampus volume -0.000 (-0.011,0.010) 0.968 0.971 0.048 (0.017,0.078) 0.002 0.016 0.005 (-0.027,0.035) 0.793 0.996 0.019 
Frontal cortex volume 0.009 (-0.001,0.019) 0.067 0.268 0.025 (-0.006,0.057) 0.113 0.226 0.018 (-0.016,0.049) 0.322 0.994 0.025 
White matter microstructure (n=2867) 
Global FA 0.008 (-0.005,0.021) 0.248 0.331 0.029 (-0.002,0.068) 0.061 0.163 0.017 (-0.016,0.045) 0.362 0.994 0.017 
Global MD 0.011 (-0.006,0.026) 0.214 0.331 -0.008 (-0.048,0.029) 0.626 0.715 -0.024 (-0.048,0.029) 0.626 0.989 0.023 

Abbreviations: DTI = Diffusion Tensor Imaging, FA=Fractional anisotropy, MD=Mean diffusivity. β CL-1 = the cross-lagged path 1, where PA scores at time 1 predict 
MRI findings at time 2; β CL-2 = the cross-lagged path 2, where MRI findings at time 1 predict PA scores at time 2. βCS-Baseline = the cross-sectional association between 
PA and MRI within time 1. p = Significant levels, CFI = comparative fit index, RMSEA = root mean square error of approximation. Statistically significant values are 
shown in bold (p FDR <0.05). Cross-lagged models were adjusted for age, sex, educational level, national origin, and body mass index, other behaviors (i.e., diet quality 
and smoking) and other diseases (i.e., hypertension, cancer cardiovascular diseases, diabetes, and depression). 

Table 3 
Bidirectional associations between physical activity domains and brain structure based on cross-lagged panel models (model 2).   

Physical activity → Brain Brain → Physical activity Cross-sectional Fit measures  

β CL-1 p pFDR β CL-2 p pFDR βCS-Baseline p CFI RMSEA 
Walking 
Brain volumes (n=3027)           
Total brain volume -0.011 (-0.020,- 

0.001) 
0.026 0.104 0.041 (0.006,0.076) 0.023 0.184 -0.003 (-0.032,0.028) 0.883 0.996 0.022 

Gray matter volume 0.007 (-0.004,0.017) 0.244 0.437 0.036 (-0.001,0.074) 0.056 0.224 -0.018 (-0.041,0.014) 0.339 0.996 0.021 
White matter volume -0.026 (-0.041,- 

0.010) 
0.001 0.008 0.026 (-0.004,0.056) 0.090 0.236 0.013 (-0.022,0.046) 0.495 0.995 0.020 

White matter 
hyperintensity 

-0.013 (-0.030,0.005) 0.146 0.389 -0.020 (-0.049,0.006) 0.118 0.236 0.036 (-0.002,0.043) 0.070 0.913 0.057 

Hippocampus volume 0.004 (-0.007,0.015) 0.502 0.564 0.015 (-0.015,0.043) 0.336 0.384 0.078 (0.011,0.035) <0.001 0.939 0.063 
Frontal cortex volume 0.005 (-0.005,0.015) 0.335 0.447 -0.003 (-0.032,0.026) 0.839 0.839 0.020 (-0.005,0.017) 0.307 0.949 0.057 
White matter microstructure (n=2867) 
Global FA 0.004 (-0.010,0.018) 0.564 0.564 0.023 (-0.009,0.060) 0.152 0.243 0.061 (0.021,0.082) 0.001 0.996 0.014 
Global MD 0.010 (-0.008,0.028) 0.273 0.437 -0.018 (-0.058,0.016) 0.270 0.360 -0.048 (-0.067,- 

0.009) 
0.011 0.992 0.020 

Strenuous sports           
Brain volumes (n=3027)           
Total brain volume 0.005 (-0.003,0.012) 0.255 0.510 0.015 (-0.021,0.052) 0.409 0.628 0.013 (-0.018,0.039) 0.459 0.995 0.021 
Gray matter volume 0.000 (-0.008,0.008) 0.939 0.939 0.010 (-0.026,0.048) 0.550 0.628 -0.006 (-0.030,0.021) 0.726 0.996 0.022 
White matter volume 0.009 (-0.002,0.020) 0.109 0.291 0.011 (-0.021,0.044) 0.481 0.628 0.026 (-0.008,0.058) 0.144 0.994 0.020 
White matter 

hyperintensity 
0.003 (-0.011,0.017) 0.693 0.924 -0.013 (-0.044,0.015) 0.336 0.628 -0.009 (-0.025,0.009) 0.372 0.990 0.023 

Hippocampus volume 0.011 (0.001,0.019) 0.027 0.108 0.036 (0.004,0.070) 0.027 0.216 0.011 (-0.019,0.039) 0.497 0.997 0.017 
Frontal cortex volume 0.011 (0.002,0.018) 0.013 0.104 0.023 (-0.009,0.058) 0.156 0.624 0.005 (-0.029,0.038) 0.793 0.994 0.023 
White matter microstructure (n=2867)         
Global FA 0.001 (-0.012,0.014) 0.848 0.939 0.004 (-0.035,0.045) 0.801 0.801 -0.007 (-0.035,0.024) 0.709 0.995 0.015 
Global MD 0.005 (-0.011,0.021) 0.551 0.882 0.018 (-0.018,0.064) 0.271 0.628 0.005 (-0.023,0.031) 0.781 0.990 0.021 
Household activities           
Brain volumes (n=3027)           
Total brain volume 0.008 (-0.003,0.018) 0.147 0.588 -0.009 (-0.048,0.029) 0.634 0.689 0.023 (-0.014,0.051) 0.259 0.997 0.017 
Gray matter volume 0.012 (-0.000,0.023) 0.052 0.416 -0.024 (-0.063,0.014) 0.215 0.344 0.014 (-0.021,0.040) 0.524 0.997 0.016 
White matter volume 0.002 (-0.015,0.019) 0.829 0.829 0.007 (-0.028,0.043) 0.689 0.689 0.023 (-0.014,0.058) 0.228 0.997 0.015 
White matter 

hyperintensity 
-0.003 (-0.022,0.017) 0.781 0.829 -0.030 (-0.066,- 

0.000) 
0.046 0.092 0.037 (-0.001,0.044) 0.065 0.903 0.056 

Hippocampus volume -0.005 (-0.015,0.005) 0.330 0.829 0.075 (0.038,0.107) <0.001 <0.001 0.017 (-0.016,0.046) 0.354 0.999 0.007 
Frontal cortex volume 0.002 (-0.008,0.013) 0.638 0.829 0.043 (0.009,0.077) 0.014 0.037 0.022 (-0.012,0.053) 0.218 0.996 0.019 
White matter microstructure (n=2867)         
Global FA 0.001 (-0.010,0.013) 0.821 0.829 0.042 (0.013,0.081) 0.007 0.028 -0.019 (-0.048,0.016) 0.321 0.999 0.007 
Global MD 0.004 (-0.011,0.018) 0.619 0.829 -0.013 (-0.056,0.025) 0.454 0.605 0.005 (-0.030,0.038) 0.816 0.993 0.017 

Abbreviations: DTI = Diffusion Tensor Imaging, FA=Fractional anisotropy, MD=Mean diffusivity. β CL-1 = the cross-lagged path 1, where PA scores at time 1 predict 
MRI findings at time 2; β CL-2 = the cross-lagged path 2, where MRI findings at time 1 predict PA scores at time 2. βCS-Baseline = the cross-sectional association between 
PA and MRI within time 1. p FDR = Significant levels, CFI = comparative fit index, RMSEA = root mean square error of approximation. Statistically significant values are 
shown in bold (p FDR <0.05). Cross-lagged models were adjusted for age, sex, national origin, educational level, body mass index, other behaviors (i.e., diet quality and 
smoking), and other diseases (i.e., hypertension, cancer cardiovascular diseases, diabetes, and depression). 
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yet consistent association between walking and a larger decrease in 
white matter volume that requires further investigation. 

4.2. The association of brain structure with physical activity over time 

A healthier brain structure predicted higher total physical activity 
levels over time, especially more household activities. Consistent with 
the current findings, we previously observed that healthier brain 
structure, in terms of larger brain volume(s) and better white matter 
integrity, was associated with more self-reported physical activity (i.e., 
sports and walking) in middle-aged and older adults from the 
population-based Rotterdam Study (Hofman et al., 2022). Interestingly, 
participants from the UK Biobank were on average healthier than those 
from the Rotterdam Study. For instance, in the present study, only 12% 
of the participants had hypertension vs. 65% in the Rotterdam Study. 
This is relevant because high blood pressure is a strong risk factor for 
global and regional brain atrophy in older adults (den Heijer et al., 2003; 
Raz et al., 2005). Together, these findings seem to suggest that older 
individuals with healthier brain structures, in terms of larger brain 
volume(s) and better white matter integrity, remain more physically 
active at follow-up, independent of other health outcomes such as hy
pertension. In addition, it is important to note that both studies included 
self-reports, which could have led to under- or overestimations of 
physical activity levels. However, our results are also consistent with 
those from (Arnardottir et al., 2016), who observed that higher grey and 
white matter volumes were associated with more objective total phys
ical activity, assessed by accelerometers, in 352 older adults, even when 
adjusted for self-reported physical activity. Lastly, intervention studies 
have shown that those participants with a healthier brain structure, 
defined by larger brain volume, had better adherence to a structured 
physical activity intervention (Best et al., 2017a; Gujral et al., 2018). 
Altogether, previous and current results seem to indicate that brain 
structure predicts levels of daily movement over time in older adults 
independently of the physical activity tool (i.e., self-reported vs. objec
tively measured physical activity) or the structure of the physical ac
tivity practice (i.e., household activities or structured physical activity 
interventions). Therefore, future policies designed to keep older adults 
physically active might consider brain structure (an early indicator of 
cognitive decline) as a potential determinant of physical activity. 

4.3. The association of physical activity levels with brain structure over 
time 

This study found a borderline association of sports participation with 
hippocampal and frontal cortex volume in middle-aged and older adults. 
The hippocampus, a subcortical brain structure implicated in memory, 
spatial navigation, and other aspects of cognitive functioning, is 

structurally sensitive to exposure and engagement with novel experi
ences and environments (Rolls, 2010). It is therefore not surprising that 
the hippocampus is the most widely studied region consistently associ
ated with physical activity across the lifespan (Erickson et al., 2022, 
2019, 2011; Stillman et al., 2020, 2018; Urban-Wojcik et al., 2022). 
However, the majority of prior research on physical activity and the 
hippocampus relies mostly on animal models (Suzuki, 2016; van Praag 
et al., 1999) or clinical samples (Riggs et al., 2017), had a cross-sectional 
design (Urban-Wojcik et al., 2022), or explored the effect of a structured 
exercise intervention on hippocampal volume in late adulthood (Erick
son et al., 2011; Firth et al., 2018). Interestingly, the only study that has 
previously explored the bidirectional relationship between unstructured 
physical activity (free time or self-selected free physical activity) and 
hippocampal volume in middle-aged and older adults did not observe an 
association (Hofman et al., 2022). Several factors could underlie these 
results. For instance, physical activity may be no longer beneficial in 
individuals whose brain structure has already deteriorated to a certain 
degree (Brown et al., 2019). In this sense, differences in the health status 
of participants from the UK Biobank and the Rotterdam Study might 
explain why we observed a small beneficial effect of physical activity 
only in the UK Biobank sample. 

Surprisingly, higher levels of walking were associated with lower 
white matter volume at follow-up. Those results were not observed with 
white matter microstructure (i.e., global FA and global MD) but were 
consistent in our cross-lagged and linear mixed models. In our previous 
investigation in the Rotterdam Study, we also identified an unexpected 
association between lower white matter volume and more walks at 
follow-up, which was, however, in the opposite direction than the 
relationship observed in the present study. We can only speculate what 
may have caused these contradictory results. It is possible that several 
moderators, such as the cognitive demand of the walks, freely chosen by 
older people, could be clouding or confounding the association between 
walking and brain outcomes. In particular, several factors associated 
with more cognitively enriched walking (e.g., green vs. urban spaces, 
different vs. same route, walking in a group vs. alone) (O’Malley et al., 
2018; O’Mara, 2021; Sudimac et al., 2022) could have influenced the 
relationship between walking and brain structure and should therefore 
be taken into account in future work. Another possible explanation 
could be that not only time dedicated to walking matters but also the 
walking speed. In this line, a recent systematic review gathered strong 
evidence indicating that slower gait speed predicts higher cognitive 
decline in older people (Marín-jiménez et al., 2022). 

Different mechanisms may explain the relationship between physical 
activity and brain structure and vice versa. The analyses of different 
physical activity subtypes and in young versus old age groups support 
this idea. In particular, we found a weak borderline association between 
strenuous sports and hippocampal volume. A biological explanation 
could be that high-intensity activities, such as sports, are more likely to 
stimulate the release of neurotrophic factors and thereby increase brain 
volume, particularly in brain areas where adult neurogenesis occurs 
(Stillman et al., 2020). On the contrary, brain structure, including hip
pocampal volume, and global FA, was associated with housework in 
older people over time. One possible explanation could be that larger 
brain volumes indicate healthier older adults who were cognitively 
and/or physically better able to manage their daily lives and thus 
maintain an active lifestyle. Overall, our findings indicate that the type 
of physical activity should be considered when studying the (bidirec
tional) relationship between physical activity and brain health. Further 
studies are needed to explore the potentially different underlying 
pathways. 

Several potential limitations should be noted. First, a highly selected 
sample of healthy participants from the UK was included in this study, 
which could affect both our findings and the generalizability of these to 
the general population. The imaging subsample has been shown to be 
healthier than the entire UK Biobank cohort, potentially under
estimating associations between physical activity and brain structure 

Table 4 
Graphical table summarizing the robustness of our findings across two different 
models.   

Cross-lagged panel models Linear mixed- 
effect models  

β p pFDR β p 
Physical activity → Brain      
Walking → White matter 

volume 
-0.026 0.001 0.008 -0.016 0.001 

Brain → Physical activity      
Hippocampus volume → total 

physical activity 
0.048 0.002 0.016 0.019 0.016 

Hippocampus volume → 
Household activities 

0.075 <0.001 <0.001 0.025 0.006 

Global FA→ Household 
activities 

0.042 0.007 0.028 0.029 0.010 

β= standardized beta value; Global FA= Global fractional anisotropy. p= sig
nificant level; pFDR= significant level after adjusting for multiple comparisons. 
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(Lyall et al., 2022). In addition, even though we excluded participants 
with neurogenerative diseases, it is possible that some participants at a 
preclinical stage remained in the analyses and may have influenced our 
results. Second, given that most participants were of Caucasian ethnicity 
and/or European ancestry, generalizability to other ethnicities needs to 
be addressed in future studies. Third, physical activity was self-reported 
using a questionnaire that has not been validated and which in turn 
could overestimate or underestimate the levels of physical activity. This 
issue could be particularly problematic for physical activity subdomains 
that do not have a clear start/end (e.g., household activities or walking), 
subdomains such as “other exercises” that include a broad set of het
erogeneous activities (i.e., other exercises that could include from 
bowling to swimming), or people with reduced hippocampal volume 
and deficits in memory performance. Notably, we did not find an asso
ciation between visual memory and total physical activity in our data. 
Fourth, the observational design limits inferences about causality, and 
residual confounding cannot be ruled out. Fifth, we caution against 
interpreting either the cross-lagged panel model or the linear mixed 
model as causal effects (Lucas, 2023). Both models take baseline mea
sures into account and therefore limit the possibility of confounding 
effects, but these cannot be ruled out completely. Both statistical models 
represent slightly different approaches to model longitudinal effects. 
The cross-lagged panel model associates the outcome at follow-up with 
the predictor at baseline, while adjusting for baseline differences. The 
linear mixed model in contrast more explicitly models the change within 
subjects, equivalent to an ordinary least squares regression model with a 
change score as an outcome. The robustness of some physical 
activity-brain associations to the exact longitudinal model chosen sup
ports the presence of longitudinal effects independent of a particular 
statistical modeling approach for these pathways (Lawlor et al., 2016). 
Sixth, although we studied a wide range of MRI metrics, future studies 
may complement our findings by exploring other types of structural (e. 
g., gyrification, fractal dimension, and cortical thickness) and micro
structural (e.g., myelin water fraction, T1w/T2w ratio) measures that 
might reveal new insights into the bidirectional relationship between 
brain structure and physical activity. Lastly, we restricted our study to 
global brain structures and regions that are known to be plastic and 
therefore responsive to physical activity (e.g., hippocampus). We cannot 
exclude that there are different relationships between physical activity 
and other local brain structures. The strengths of the current study are 
the large sample size and the prospectively collected data across 
two-time points. Additionally, we used two established analysis methods 
to ensure that the reported results are robust. 

4.4. Practical implications 

In 2030, 499 million new cases of preventable major non- 
communicable diseases and mental health conditions will occur glob
ally if the prevalence of physical inactivity does not change (Santos and 
Willumsen, 2023). In this context, older adults have fewer opportunities 
to access safe, affordable, and appropriate physical activity programs, 
missing out on the physical, mental, and social health benefits of being 
active (“Global action plan on physical activity, 2018–2030: more active 
people for a healthier world,” n.d.). Overall, we provided further evi
dence for the novel insight that, besides the known positive effect of 
physical activity on brain health, there is also a reverse effect of poorer 
brain health being a potential risk factor for low physical activity in 
middle-aged and older people. This new research might help policy
makers prioritize the development of policy actions to promote and 
enable more middle-aged and older adults with potentially accelerated 
brain aging to be active. 

5. Conclusions 

There seems to be a bidirectional association between physical ac
tivity and brain structure in middle-aged and older adults. However, we 

found more consistent evidence that a healthier brain structure pre
dicted higher physical activity levels than for the inverse, more estab
lished relationship (higher physical activity predicted a healthier brain 
structure). Notably, the association between brain structure and phys
ical activity levels seemed to be driven by household activities, which 
suggests people with a healthier brain structure are more able to deal 
with their active daily routines. Further longitudinal studies are needed 
to disambiguate populations most affected by physical activity, the key 
stages to appreciate brain structure changes (e.g., cognitively normal vs. 
cognitively impaired), and the mechanisms that might explain why 
specific physical activity domains are differently associated with brain 
structure in middle-aged and older adults. 
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