

Population Neuroscience: Research that matters for public health

Family meeting, September 2023

Henning Tiemeier, MD PhD Chair in Maternal and Child Health, Harvard Department of Social and Behavioral Science & Child and Adolescent Psychiatry & Epidemiology, Erasmus MC Rotterdam

Research until now. Selected examples

□ Research ongoing & plans

Learning objectives

- The impact of prenatal exposures on brain development
- The importance of time and timing (life course epidemiology)
- Identify how child neuroimaging might impact public health

Clinical utility

Genetics: "not really, not yet, not in most cases"

Brain Imaging in child psychiatry? one example only Does brain imaging help predict adolescent psychotic-like experiences or hallucinations?

 \Box at age 10 years, some in 24%

 \Box at age 14 years, some in 11%

study in 2042 adolescents with repeated imaging

Smaller baseline grey matter volume is longitudinally related to persistence of hallucinations

Lobar gray matter volumes related to the persistence of hallucinations. Darker colors indicate stronger associations (expressed in odds ratios, interaction with time).

Steenkamp, ..., Tiemeier, Kushner Biol Psychiat 2022

Grey matter volume is longitudinally related to persistence of hallucinations: 2042 adolescents A Gray matter volume - Large - Small

No added value of repeated imaging measures: No association of baseline symptoms with change in brain volumes

Exciting question, good data but clinical value? small effects and unspecific for brain and for psychiatric outcome

Steenkamp, .., Tiemeier, Kushner. Biol Psychiat 2022

Focus of this talk: child brain imaging

Population Neuroscience

an emerging field of research defined by the intersection of neuroscience with epidemiology

Prenatal Exposures

to environmental chemicals and psychosocial stressors during pregnancy are associated with adverse birth outcomes and neurodevelopment.

Prenatal exposures

Can we identify important intrauterine influences on child development for MCH practice or public health ?

Prenatal exposures

Selected maternal risk factors

- Depression
- Stress
- Antidepressant use: SSRI
- Diet: Fatty acids
- Poverty
- Smoking or cannabis use
- Thyroid deficiency
- Folate intake
- Vitamin D deficiency
- Environmental toxins, i.e.
 Organophosphates, Transfatty acids

Design Generation R

- Prospective cohort design
- From early foetal life
- 9,778 mothers and their children
- Urban, multi-ethnic population
- Baseline response: 62%

Overview of design and assessments

Ultrasound Measures

Birth

Blood (mother, father and child)

Questionnaires

Child Behavior (mother and father and teacher)

Child Cognition

MRI

N=1070 N

7

6

N=4050 N=3250

10

9

13 15

Neurodevelopment

Motor development ADHD, autism and problem behavior IQ and cognition Brain structural and functional development

Conception

Maternal Depression I Timing Maternal depressive symptoms from fetal life forward and child brain structure at age 10 years

Ultrasound Measures

Blood (mother, father and child) and thus omics

Maternal depressive symptoms at different time points (n>2000)

Global brain volumes (cm³)

denressive	Total White N	latter	Total Grav Matter	
symptoms	B (95% CI)	p- value	B (95% CI)	p- value
Prenatal 20	weeks (n=2348) -1.89 (-6.21, 2.4	43) .39	-2.32 (-7.75, 3.11)	.40
Postnatal 2 r	nonths (n=2083) -3.23 (-7.46, 1.0	00) .14	-7.36 (-12.61,-2.12)	.006#
Child 3 years	s (n=2207) -1.36 (-7.06, 4.3	35) .64	0.82 (-6.28, 7.92)	.82
Child 9 years	s (n=2676) -1.94 (-5.98, 2.′	11) .35	-2.17 (-7.22, 2.88)	.40

Model 2 adjusted for child age at scan, child gender, mother age at intake, ethnicity, prenatal maternal education, marriage (partner) status, mother BMI intake, child birth weight, maternal smoking and alcohol intake. Zou et al, AJP 2019

Matarnal

Brain connectivity or white matter microstructure

Tracts are group average representations in standard coordinate space.

blue	cingulum bundle
gray	forceps major
tan	forceps minor
red	inferior longitudinal
	fasciculus
orange	superior
	long. fasciculus,
green	uncinate
	fasciculus

R = Right, L = Left, A = Anterior, P = Posterior, I = Inferior, S = Superior

Single time point maternal depression and global white matter infrastructure (DTI) age 9 years

Symptom assessment

Time point	Model	В	Global FA 95% Cl	Р	Microstructure and measure
Prenatal					of connectivity
(n=2243)	3	-0.07	(-0.27, 0.11)	0.44	
Postnatal					-
2m (n=2037)	3	-0.22	(-0.41, -0.04)	0.02	
Postnatal					-
3y (n=2183)	3	-0.04	(-0.29, 0.20)	0.74	
Postnatal					_
9y _(n=2577)	3	-0.07	(-0.25, 0.10)	0.40	

Model 1 no covariates.

Model 3 additionally adjusted for child age at scan, child gender, mother age at intake, ethnicity, prenatal maternal education, marriage (partner) status, mother BMI intake, child birth weight, maternal smoking and alcohol intake.

Zou et al, AJP 2019

EDITORIALS

A commentary: confounding

Maternal Depression and Child Development: Clues to Causal Mechanisms From Potential Confounders

Deanna M. Barch, Ph.D., Cynthia Rogers, M.D.

This issue of the *Journal* includes an important study by Zou and colleagues (1) examining the relationships of prenatal and postnatal (2 months, 3 years, and 10 years) maternal

ant study by The authors also raise the possibility that the severity of maternal depression in the postnatal period may be a marker for overall increased maternal depression across offspring

nd did not include covariates representing potenounders that

own effects on
relopment and
including ma-
lucation level,
lcohol use, and
lincome. TheseWhat the authors did not
find in the study is, in many
ways, as striking and
important as what they did
find.

:hemselves can

ctors for both maternal and child depression and

Maternal depression and global DTI Confounding

Time point	Model	В	Global FA 95% Cl	Р	Microstructure and measure
Prenatal	1	-0.28	(-0.46, -0.10)	0.002	of connectivity
(n=2243)	3	-0.07	(-0.27, 0.11)	0.44	
Postnatal	1	-0.29	(-0.47, -0.12)	0.001	-
2m (n=2037)	3	-0.22	(-0.41, -0.04)	0.02	
Postnatal	1	-0.16	(-0.41, 0.08)	0.18	-
3y (n=2183)	3	-0.04	(-0.29, 0.20)	0.74	
Postnatal	1	-0.18	(-0.35, -0.01)	0.04	
9y (n=2577)	3	-0.07	(-0.25, 0.10)	0.40	

Model 1 no covariates.

0

Model 3 additionally adjusted for child age at scan, child gender, mother age at intake, ethnicity, prenatal maternal education, marriage (partner) status, mother BMI intake, child birth weight (only postnatal models), maternal smoking and alcohol intake.

Repeatedly measured exposure

- □ A chance finding?
- Did not study repeatedly measured exposure
- □ These are non-independent associations
- □ Typical trajectory, specific groups

Trajectories of maternal depression

Trajectories of maternal depression and brain connectivity in the child

Model	Group	Global FA			
		В	95%CI	Ρ	
	No	Ref	-	-	
Madal 2	Low	-0.14	(-0.30, 0.02)	0.09	
woder 5	Medium-up	0.21	(-0.37, 0.79)	0.47	
	High-down	-0.53	(-1.01, -0.04)	0.034	

Model 3 additionally adjusted for child age at scan, gender, maternal ethnicity, maternal age, gestational age at birth, maternal education, marital status, family income, child birth weight, maternal smoking and alcohol intake.

Zou et al, AJP 2019

Critical periods: timing

Variable exposure is important

4

- Carry over effects of exposure
- Biological periods of rapid development, a sensitive window
- Candidate exposures for sensitive periods: <u>thyroid hormone</u>, serotonin, vitamin D, hormones

Maternal Depression II and maternal prenatal SSRI use

> Time (since exposure) and timing (adolescence)

Do prenatal exposure effects remain or do the attenuate with age?

ORIGINAL ARTICLE

ONLINE FIRST

Maternal Use of Selective Serotonin Reuptake Inhibitors, Fetal Growth, and Risk of Adverse Birth Outcomes

2012

Hanan El Marroun, PhD; Vincent W. V. Jaddoe, MD, PhD; James J. Hudziak, MD; Sabine J. Roza, MD, PhD; Eric A. P. Steegers, MD, PhD; Albert Hofman, MD, PhD; Frank C. Verhulst, MD, PhD; Tonya J. H. White, MD, PhD; Bruno H. C. Stricker, MD, PhD; Henning Tiemeier, MD, PhD

BJPsych

The British Journal of Psychiatry (2014) 205, 95–102. doi: 10.1192/bjp.bp.113.127746

2014

Prenatal exposure to selective serotonin reuptake inhibitors and social responsiveness symptoms of autism: population-based study of young children[†]

Hanan El Marroun, Tonya J. H. White, Noortje J. F. van der Knaap, Judith R. Homberg, Guillén Fernández, Nikita K. Schoemaker, Vincent W. V. Jaddoe, Albert Hofman, Frank C. Verhulst, James J. Hudziak, Bruno H. C. Stricker and Henning Tiemeier

Intrauterine exposure to maternal SSRI use or depression and white matter at age 7 years

Intra-uterine exposure to maternal depression or SSRI and white matter catch-up growth in childhood Reference (n = 2574 with 3935 scans)

Spider plots: White matter FA whole brain and tracts

Intrauterine exposure

- Prenatal SSRI exposure (n = 37 with 60 scans)
- Prenatal depression exposure (n = 229 with 367 scans)

Contrasting exposure

- SSRI use before pregnancy (n = 72 with 95 scans)
- Postnatal depression exposure only (n = 66 with 95 scans)

Ade 13

Intra-uterine exposure to maternal depression or SSRI and white matter catch-up growth in childhood Reference (n = 2574 with 3935 scans)

Spider plots:

White matter FA whole brain and tracts

Intrauterine exposure

Prenatal SSRI exposure (n = 37 with 60 scans)

Prenatal depression exposure (n = 229 with 367 scans)

Contrasting exposure

- SSRI use before pregnancy (n = 72 with 95 scans)
- Postnatal depression exposure only (n = 66 with 95 scans)

Intra-uterine exposure to maternal depression or SSRIs and subcortical structure development across childhood

Time: Many prenatal exposure effects attenuate with age

 Catch up growth and development: Neuroplasticity

Dilution of effects with age

Clinical relevance: Little long-term effect of intra-uterine exposure to SSRIs

Poverty Does poverty impact brain development ?

Social interaction with timing

Background; poverty imaging

Household income has been associated with brain morphology.

No study assessed household income from fetal life onward.

Whether the association between low income and child brain morphology differs by

- 1) timing of exposure and
- 2) minority/majority status

Generation R: National origins

Based on classification according to the CBS, 2004; Missing: (12%)

□ Data of a total of 2166 children from the Generation R study was analyzed.

Poverty was defined based on national lowincome threshold in Netherlands
Poverty by race/ethnicity or parental national origin

	Never poverty	Ever poverty	Timing of poverty exposure N=442				
Maternal ethnicity	N = 1724 (79.6%)	N = 442 (20.4%)	Poverty in pregnancy only N = 111 (5.1%)	Poverty in childhood only N = 116 (5.4%)	Chronic poverty pregnancy+ childhood N = 215 (9.9%)		
Dutch. %	72.5	26.0	19.8	50.0	16.3		
Western, non-Dutch (deleted)	. 2.0	20.0	. / .0				
Non-Western, %	13.5	67.2	69.4	44.8	78.1		

Poverty and brain volume

Affected by poverty but in different groups: White matter and the amygdala

Poverty and brain morphology in the majority of Dutch national origin

Dutch (N = 1365)	Cerebral white matter volume					
	B 95%CI		P-value			
Poverty status						
Never-low-income	0	Ref.				
Ever-low-income	-0.22	-0.40; -0.05	0.01			
In pregnancy only	-0.07	-0.43; 0.30	0.73			
In childhood only	-0.25	-0.48; -0.01	0.04			
Chronic poverty	-0.28	-0.59; 0.02	0.07			

Koyama, Sci Reports, 2023

Poverty and brain morphology in the minority of non-Dutch national origin

Non-Western (N = 530)		Total brain volume			Amygdala volume			
Poverty status	Ν	В	95%CI	P-value	В	95%CI	P-value	
Never-low-income	233	0	Ref.		0	Ref.		
Ever-low-income	297	-0.02	-0.20; 0.15	0.79	-0.15	-0.31; 0.01	0.06	
In pregnancy only	77	0.05	-0.18; 0.28	0.68	-0.20	-0.41; 0.004	0.05	
In childhood only	52	-0.04	-0.30; 0.22	0.77	0.01	-0.23; 0.25	0.93	
Chronic poverty	168	-0.07	-0.28; 0.14	0.52	-0.21	-0.40; -0.02	0.03	

Koyama, Sci Reports, 2023

Functional outcomes

Koyama, Sci Reports, 2023

- Early-life poverty exposure and preadolescent brain morphology are associated.
- Differential associations across majority and minority groups were found.
- In the majority group, smaller total brain volume partly explained the association between poverty and poor school performance.
- Distinct vulnerability and mechanism must be discussed: do findings in minority reflect stress by discrimination? Yes, partly, we could show

Prenatal maternal thyroid function

Timing again

Thyroid and brain

neurogenesis

neural migration

synapse formation

myelination

child thyroid hormones

Roman & Ghassabian et al. 2013 Ann Neurol

Adjusted for child age, sex, gestational age at blood sampling, hCG, maternal age, smoking, BMI, parity, education level, ethnicity, fetal gender and birth weight.

Korevaar et al. 2015, Lancet Endo

Replication in ALSPAC and INMA study: IQ

Korevaar et al. 2015, Lancet Endo

Maternal TSH during pregnancy and child grey matter age 9/10 years

TSH mother (IU/L)

Watch out for the X-axis: High TSH indicative of low thyroid levels Flipped as compared to prior figure

Timing in pregnancy analysis

Gestational age at assessment: timing and sensitive period ?

Analyses per week of TSH assessment

Jansen, Lancet D& E, 2019

Timing

• Sensitive period to maternal thyroid

 Need not reflect less overall thyroid dependency of brain (view it as measurement error if you rely on maternal thyroid)

 Major clinical and research implications – interventions must start early Do you know what trans-fatty acids are?

Calendar time ⁽²⁾ and brain growth over time

Trans-fatty acids are found in fried foods, commercial baked goods, processed foods and margarine

*ADA.M.

Cis- and Trans-Fatty Acids

Industrial bakery products

18.1

Trans fatty acid content (% on fat basis) changes in the Netherlands

Inclusion of participant and mean TFA levels

Zou et al., EJE, 2022

A relation of TFA with fetal head size

Table 2 Maternal trans fatty acid concentration during pregnancy in relation to fetal head circumference and head circumference growth

Maternal	Fetal HC at single assessments ^a							Fetal HC growth rate across	
TFA	Second trimester $(n = 6792)$			Third trimester $(n = 6625)$			assessments $(n = 6517)$		
concentration	В	95% CI	<i>p</i> -value	В	95% CI	<i>p</i> -value	В	95% CI	<i>p</i> -value
Model 1	0.13	0.01, 0.24	0.03	-0.26	-0.43, -0.08	0.004	-0.04	-0.05, -0.02	< 0.001
Model 2	0.12	0.004, 0.24	0.04	-0.30	-0.47, -0.12	< 0.001	-0.04	-0.06, -0.02	< 0.001
Model 3	0.07	-0.05, 0.19	0.24	-0.33	-0.51, -0.15	< 0.001*	-0.04	-0.06, -0.02	< 0.001*

TFA Trans fatty acid, HC Head circumference

Zou et al., EJE, 2022

Calendar time is related to head size A causal or instrumental variable analysis

Model	Fetal HC	in the third trimester ^a		Fetal HC	Fetal HC growth rate across assessments ^b			
	В	95% CI	<i>p</i> -value	В	95% CI	<i>p</i> -value		
$\begin{array}{c}1\\2\\ time\end{array}$	ar -0.77 -0.66	-1.0, -0.51 -0.91, -0.40	<0.001 <0.001	-0.11 -0.10	-0.13, -0.09 -0.12, -0.08	<0.001 <0.001		
3	-1.0	-1.2, -0.79	< 0.001	-0.11	-0.14, -0.09	< 0.001		

HC Head circumference

Instrumental variable analysis on maternal trans fatty acids concentration during pregnancy in relation to fetal HC in the third trimester (n = 6383) and HC growth across assessments in the second and third trimesters (n = 6280) was performed using two-stage least squares estimation. Calendar time of maternal trans fatty acids assessment was used as the instrumental variable. The raw values of maternal trans fatty acids concentration were log-transformed to obtain a normal distribution

Zou et al., EJE, 2022

Imaging research of high public health relevance

• Establishing causal mechanism

• Reduction of Trans-fatty acids helps

 Low- and middle-income countries (e.g., East Europe, South Asia) have high TFA products in fried food and oil

Population neuroscience

- Brain imaging can unravel mechanisms if studies are sufficiently large: etiology
- Not useful as a diagnostic or prognostic tool
- Meaningful clinical prediction using neuroimaging in child psychiatry will remain elusive in next 10 years
- Public health relevance: occasionally

Ongoing research: ORACLE

Imaging: The numbers vary and always get smaller

Child imaging in Generation R

Imaging data parents ORACLE

It takes three: Parental hostility, brain morphology and child externalizing problems in a parentoffspring neuroimaging trio design

How hostility between parents transpires to the child: parents

a Adjusted correlation between maternal and paternal hostility

Parental hostility and parental white matter volume

• Effect estimate (beta per hositility score)

Parental hostility and child white matter volume

Effect estimate (beta per hositility score)

Hostility and white matter volume

Can this help explain child behavior?

New Project Plans

Maternal brain

Maternal depression **Paternal depression** Paternal brain

Yenee Soh, Harvard

New Project Plans Maternal brain Maternal depression Child behavior Paternal depression Child brain Paternal brain

The children

Erasmus MC University Medical Center Rotterdam

zafing

Ryan Muetzel

Andrea Cortes Hidalgo

Runyu Zou

Hanan El Marroun
Thank you !

