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Definition and calculation of polygenic
scores



Polygenic (risk) Scores - PRS

* Polygenic scores - PGS
e Genetic (risk) Scores - GRS
* Genome-wide Polygenic Scores - GPS

* Polygenic Indices - PGl

* Individual indices of the genetic predisposition, or burden, that an
individual carries for a particular (quantitative or case/control) trait
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Common polygenic variation contributes to risk of

schizophrenia that overlaps with bipolar disorder 1x1012

0.02

International Schizophrenia Consortium*

Variance explained, R 2

* Landmark study in psychiatric genetics

0.01

* First application PGS Schizophrenia to infer
genetic overlap with Bipolar Disorder

* Since then PGS have become common

downstream analyses in GWAS analyses
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* Measured genetic variation

Most commonly:

* Single nucleotide polymorphisms (SNPs):
Common variation between individuals
at a single position in the genetic code
happening in at least 1% of the
population.

Individual 1 Individual 2
chr2 «++CGATATTCCTATCGAATGTC... . ., ,,,CGATATTCCCATCGAATGTC...
copyl + + . GCTATAAGGATAGCTTACAG. .. copyl + + . GCTATAAGGGTAGCTTACAG. ..
chr2 +++CGATATTCCCATCGAATGTC...  gy2 «..CGATATTCCCATCGAATGTC...

copy? «+ « « GCTATAAGGGTAGCTTACAG. .. copy?2 . ..GCTATAAGGGTAGCTTACAG...




Calculation
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PGS are approximately normally distributed in the population with
people varying on a continuum from low to high polygenic burden for
a particular trait

]
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Figure: Abdellaoui, A. [@dr_Appie]. (2023, Mar 26). Twitter
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Genotype frequency
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15 years of GWAS discovery: Realizing the promise

Abdel Abdellaoui,'* Loic Yengo,” Karin J.H. Verweij,! and Peter M. Visscher?

Height served as the model complex trait when Mendel’s laws of
inheritance were reconciled with the inheritance of quantitative

traits



* Saturation of the
common-variant
architecture among
European-ancestry
genomes

* Approximately
12,000 SNPs jointly
explain 40% of
variation in out-of-
sample prediction

* Approaches the
common SNP-based
heritability

Article

A saturated map of common genetic variants
associated with human height

https://doi.org/101038/s41586-022-05275-y Common single-nucleotide polymorphisms (SNPs) are predicted to collectively

Received: 19 December 2021 explain40-50% of phenotypic variation in human height, butidentifying the specific

variants and associated regions requires huge sample sizes'. Here, using datafroma

genome-wide association study of 5.4 million individuals of diverse ancestries, we

show that12,111independent SNPs that are significantly associated with height

Open access account for nearly all of the common SNP-based heritability. These SNPs are clustered

® Check for updates within 7,209 non-overlapping genomic segments with amean size of around 90 kb,

covering about 21% of the genome. The density of independent associations varies
across the genome and the regions of increased density are enriched for biologically
relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all
SNPsin the HapMap 3 panel?) account for 40% (45%) of phenotypic variance in
populations of European ancestry but only around 10-20% (14-24%) in populations of
other ancestries. Effect sizes, associated regions and gene prioritization are similar
across ancestries, indicating that reduced prediction accuracy is likely to be explained
by linkage disequilibrium and differences in allele frequency within associated
regions. Finally, we show that the relevant biological pathways are detectable with
smaller sample sizes than are needed toimplicate causal genes and variants. Overall,
this study provides acomprehensive map of specific genomic regions that contain the
vast majority of common height-associated variants. Although this map is saturated
for populations of European ancestry, further research is needed to achieve
equivalent saturationin other ancestries.

Accepted: 24 August 2022
Published online: 12 October 2022




From GWAS to PGS
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Significance of association (-log, P)

Chr SNP bp Al A2 Freq b se p
® 1 rs2286139 761732 C T 0.1379 -0.0104056 0.00732416 0.155397
1 rs12562034 768448 A G 0.10475  -0.00627592  0.00827054 0.447955
30 i 1 rs4970383 838555 A C 0.247975 0.00946201 0.00587444 0.107243
i 1 rs1806509 853954 C A 0.3912 0.0152744 0.00523012 0.00349507
1 rs13302982 861808 A G 0.018025 -0.0180122 0.0189517 0.341895
27 - 1 rs28576697 870645 C T 0.29355  0.0116486 0.00556379 0.0362916
1 rs2340582 882803 A G 0.05465  0.0119371 0.0111055 0.282426
1 rs3748594 886384 A G 0.025975 -0.01244 0.0158797 0.433401
24— H 1 rs28504611 908414 T C 0.022225 0.00388796 0.0171623 0.820781
; 1 rs9777939 929190 A G 0.03345  -0.00446279  0.0141522 0.752502
¥ 1 rs1891910 932457 A G 0.2295 -0.00647527  0.00605864 0.285175
21— 1 rs35940137 940203 A G 0.050575 -0.10689 0.0115935 2.97533e-20
1 rs6657048 957640 T C 0.011825 0.0892934 0.0233322 0.000129691
1 rs9803031 987200 C T 0.083875 -0.00434284  0.0091306 0.634334
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Important (1)

* (SNP)h2is spread across thousands of loci of very small effect

» Sample size of GWAS is of central importance for the discovery and estimation
of SNP effects and, in turn, for the predictive power of PGS

* See Dudbridge, 2013

OPEN @ ACCESS Freely available online @PLQS | ceneTICS

Power and Predictive Accuracy of Polygenic Risk Scores

Frank Dudbridge*

Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom



Important (2)

* We test for the effects of millions of variants on a phenotype but these
are not independent due to linkage disequilibrium (LD)

&
30 i




EZE
Key

* Linkage disequilibrium /
(LD): the correlation
between nearby
variants on the same
chromosome

* Genetic variants near
one another tend to
be inherited together
over generations




Important (2)

* We test for the effects of millions of variants on a phenotype but these
are not independent due to linkage disequilibrium (LD)
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Important (2)

* We test for the effects of millions of variants on a phenotype but these
are not independent due to linkage disequilibrium (LD)

* We are conducting the equivalent of 1 million independent tests (Risch &
Merikangas, 1996) : )

genome-wide significance threshold of 5x 108 .




Important (3)

* We need to account/adjust for LD when aggregating SNPs in PGS!

* Otherwise individual contributions of the specific loci included will be
overestimated

* Optimally, we would estimate joint effects of all SNPs in a multivariable
framework, but this is not feasible!



So you have your discovery GWAS sumstats...

% M H
PGC Do GMSATLAS
" "projecg’chOs GWAS

Psychiatric Genomics Consortium

CAREFUL! these need to be independent of your target set!
(i.e. where you are performing PGS-phenotype analyses)

What next?



Approaches to compute polygenic scores



Approaches to compute polygenic scores

* which SNPs to include?
* how do you adjust for LD?



The standard approach

e Clumping and thresholding (C+ T) approach



The standard approach

e Clumping and thresholding (C+ T) approach

* LD-clumping: obtaining a set of quasi-independent SNPs

 information from (ancestry-matched) LD reference panel (can be
your target set)

e prioritizing on p-values from GWAS summary statistics

P
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. e 0.447955
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** 0.00349507
0.341895
* R3847007 0.0362916
AA 2% 0.282426
P 0.433401
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28 Ve 2l 2.97533e-20
Nee

0.000129691
0.634334



The standard approach

e Clumping and thresholding (C+ T) approach

* LD-clumping: obtaining a set of quasi-independent SNPs

 information from (ancestry-matched) LD reference panel (can be
your target set)

e prioritizing on p-values from GWAS summary statistics

- Thresholding: calculate PGS for a range of P-value
thresholds



Thresholding: calculate PGS for a
range of P-value thresholds
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Thresholding: calculate PGS for a
range of P-value thresholds
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Thresholding: calculate PGS for a
27 - range of P-value thresholds
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The standard approach
which SNPs to include?

* Standard GWAS threshold to select
SNPs is often too restrictive for the
purpose of PGS construction

* PGS derived from all SNPs can also
be suboptimal due to added noise
across many false positives SNPs
included
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What options do you have?

Pick your poison: S
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* Choose an a-priori threshold for inclusion (suboptimal in most cases!)

Report all scores (biased upward!)

Optimize score in a validation set (need separate sample from your discovery and target

sets!)

Obtain a unique score from first Principal Component across thresholds [see Coombes et

al., 2020] (in most realistic scenarios this =~ threshold 1)

Use advanced ‘single-score’ methods approaches



Advanced approaches



Advanced approaches

 Two broad themes: which SNPs are included in the scores,
and the assumed distribution of SNP effect sizes

- Depending on these: reweighting of GWAS estimates H

* In general: methods differ in terms of how they attempt to
model genetic architecture to improve prediction accuracy



Advanced approaches

« The underlying trait distributions are in practice unknown,
hence the optimal (tuning) parameters will need to be
validated

 Unless pseudo-validation / 'single score’ methods are
available...



Example: LDpred2

AUGC

Bioinformatics, 36(22-23), 2020, 5424-5431
doi: 10.1093/bioinformatics/btaa1029

Advance Access Publication Date: 16 December 2020
Original Paper OXFORD

Genetics and population analysis

LDpred2: better, faster, stronger

Florian Privé'-*, Julyan Arbel® and Bjarni J. Vilhjalmsson'3*

'National Centre for Register-Based Research, Aarhus University, Aarhus 8210, Denmark, 2Univ. Grenoble Alpes, Inria, CNRS, Grenoble
INP, LUK, Grenoble 38000, France and ®Bioinformatics Research Centre, Aarhus University, Aarhus 8000, Denmark
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Example: LDpred2

joint effects given marginal effects
and correlation between SNPs:

onint =S8 R S}'marg .
only a specific fraction of markers is assumed to

be involved in the trait and drawn from a
normal distribution, while the rest is fixed to o:

12
N0, — with probability p.

Bi =S;;y; ~ "Mp P YP;
0 otherwise,

M = variants

p = fraction of causal variants

h? = SNPh?

hyper-parameter p (1, 0.3, 0.1, 0.03, 0.01, 0.003
and 0.001)

AUGC

Bioinformatics, 36(22-23), 2020, 5424-5431

doi: 10.1093/bioinformatics/btaa1029

Advance Access Publication Date: 16 December 2020
Original Paper

Genetics and population analysis

LDpred2: better, faster, stronger

Florian Privé'-*, Julyan Arbel® and Bjarni J. Vilhjalmsson'3*

'National Centre for Register-Based Research, Aarhus University, Aarhus 8210, Denmark, 2Univ. Grenoble Alpes, Inria, CNRS, Grenoble
INP, LUK, Grenoble 38000, France and ®Bioinformatics Research Centre, Aarhus University, Aarhus 8000, Denmark
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Bioinformatics, 36(22-23), 2020, 5424-5431
doi: 10.1093/bioinformatics/btaa1029
Advance Access Publication Date: 16 December 2020

Exam P le: LD o red2

Genetics and population analysis

LDpred2: better, faster, stronger

joint effects given marginal effects
and correlation between SNPs: — Florian Privé'*, Julyan Arbel® and Bjarni J. Vilhjalmsson™3*

'National Centre for Register-Based Research, Aarhus University, Aarhus 8210, Denmark, 2Univ. Grenoble Alpes, Inria, CNRS, Grenoble

?joint = S_IR_IS?maIg . R= ” INP, LJK, Grenoble 38000, France and *Bioinformatics Research Centre, Aarhus University, Aarhus 8000, Denmark
only a specific fraction of markers is assumed to 084 *
be involved in the trait and drawn from a aeathod ‘}
_ : . . ] LDpred2-int—gwide 0O c+1
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LDpred2-auto: doesn’t require explicit validation! Tralt



What method works best?

Biol Psychiatry. Author manuscript; available in PMC 2021 Nov 1. PMCID: PMC8500913
Published in final edited form as: NIHMSID: NIHMS1704400
Biol Psychiatry. 2021 Nov 1; 90(9): 611-620. PMID: 34304866

Published online 2021 May 4. doi: 10.1016/j.biopsych.2021.04.018

A comparison of ten polygenic score methods for psychiatric dis P L E N E T I
multiple cohorts

Guiyan Ni,! Jian Zeng,! Joana A Revez,! Ying Wang,! Zhili Zheng,! Tian Ge,2 Restu:
Dale R Nyholt,? Jonathan R | Coleman,* Jordan W Smoller,>*® Schizophrenia Worki g  open accESS B PEER-REVIEWED
Genomics Consortium,” Major Depressive Disorder Working Group of the Psychiatri -
Jian Yang,!-® Peter M Visscher,! and Naomi R Wray'-10

RESEARCH ARTICLE

Evaluation of polygenic prediction methodology within a
reference-standardized framework

Oliver Pain [E], Kylie P. Glanville, Saskia P. Hagenaars, Saskia Selzam, Anna E. Flrtjes, Héléna A. Gaspar,
Jonathan R. I. Coleman, Kaili Rimfeld, Gerome Breen, Robert Plomin, Lasse Folkersen, Cathryn M. Lewis

Version 2 Published: May 4, 2021 e https://doi.org/10.1371/journal.pgen.1009021

In general: no dramatic differences, although more nuanced results emerged depending on
specific applications and settings (e.g. diverse genetic architectures).
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Table S2. General resources for PGS workflow

Resource

Polygenic
score catalog

Polygenic
index
repository

Open GWAS

GWAS catalog
GWAS Atlas

PGS Atlas

GenoPred

Reference

(Lambert et
al., 2021)

(Becker et al.,
2021)

(Elsworth et
al., 2020)

(MacArthur et
al., 2017)

(Watanabe et
al., 2019)

(Richardson et
al., 2019)

(Pain et al.,
2021)

Brief description

Database of PGS employed in published work providing

relevant metadata to develop and evaluate themin
different datasets.

PGS repository providing metadata to reproduce PGS,
or already constructed PGS for a number of cohorts.
PGS are obtained from a reference standardized and
optimized pipeline.

A curated collection of GWAS summary statistics.

A curated catalog of GWAS results and summary
statistics.

Database of GWAS results and downstream analyses.

Atlas of PGS — phenotype associations across 162 PGS
and 551 traits.

A workflow for evaluating PGS methods within a
reference standardized framework.

link

https://www.pgscatalog.org

https://www.thessgac.org/pqi-
repository

https://gwas.mrcieu.ac.uk

https://www.ebi.ac.uk/gwas/

https://atlas.ctglab.nl

http://mrcieu.mrsoftware.org/PRS_atl

as/

https://opain.qgithub.io/GenoPred/
https://github.com/opain/GenoPred/tr
ee/master/GenoPredPipe



https://www.pgscatalog.org/
https://www.thessgac.org/pgi-repository
https://gwas.mrcieu.ac.uk/
https://www.ebi.ac.uk/gwas/
https://atlas.ctglab.nl/
http://mrcieu.mrsoftware.org/PRS_atlas/
https://opain.github.io/GenoPred/
https://github.com/opain/GenoPred/tree/master/GenoPredPipe

The Journal of Child N
Psychology and Psychiatry WY e v

Journal of Child Psychology and Psychiatry 63:10 (2022), pp 1111-1124 doi:10.1111/jcpp.13611

Research Review: A guide to computing and
implementing polygenic scores in developmental
research

Andrea G. Allegrini,? () Jessie R. Baldwin,*? Wikus Barkhuizen,! (") and
Jean-Baptiste Pingault!-?

'Division of Psychology and Language Smences Department of Clinical, Educational and Health Psychology,
University College London, London, UK; Somal Genetic and Developmental Psychiatry Centre, Institute of
Psychiatry, Psychology and Neuroscience, King’s College London, London, UK



Applications of PGS

* Research tools!
* Inferring genetic overlap between traits
* Risk stratification

* Can be employed in (clinical) prediction models — utility still limited
at present



Applications of PGS

 GWAS N is central, but bigger is not always better

* The meaning of the PGS depends on the phenotypic definition employed
in GWAS!



Example: PRS from developmental specific BMI GWASes (max N ~30k)
perform better than adult BMI GWAS (N~700Kk)

Time-resolved MoBa BMI vs. Adult BMI
0.06 P RD

W ) =
0.._.7 | l I I I" . . |_mmon gm! I -?

LStandérdizéd BMI mean se per quintile

-0.3 1

-0.6 1

o o o o o NV &Y ad Y G AN

Helgeland et al., 2022. Nature Metabolism volume 4, pages 344-358 (2022)



Example: PRS based on child case—control diagnosis of ADHD misses

the full (genetic) complexity of the disorder across the lifespan
~—~ 038
S
aus 0.6
)
v 04 ¢
:
T 0.2 t
N
"2
& o} 1
T
-0.2
<
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The trio design
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The trio design

 "Direct” genetic effects

rearing
environments, dynastic effects,
population structure

* PGS-phenotype associations
potentially inflated, or completely
accounted for, by indirect processes
(Veller and Coop, 2023)
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Caveats/considerations

 Personalized intervention

* Cross-ancestry portability
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Polygenicindices (PGls) are increasingly used to identify individuals

atrisk of developing disease and are advocated as screening tools for
personalized medicine and education. Here we empirically assess rank
concordancebetween PGls created with different construction methods
and discovery samples, focusing on cardiovascular disease and educational
attainment. We find Spearman rank correlations between 0.17 and 0.93

for cardiovascular disease,and 0.40 and 0.83 for educational attainment,
indicating highly unstable rankings across different PGls for the same trait.
Potential consequences for personalized medicineand gene-environment
(G x E)interplay are illustrated using data from the UK Biobank. Simulations
show how rank discordance mainly derives from alimited discovery sample
size and reveal atight link between the explained variance of a PGl and its
ranking precision. We conclude that PGl-based ranking is highly dependent
on PGl choice, such thatcurrent PGls do nothave the desired precision tobe
used routinely for personalized intervention.



Fig. 3: Venn diagram depicting the overlap in individuals ranked in the top quintiles of
five CVD PGlIs (N = 4,061).
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Individuals included in this figure are potential candidates for statin therapy22: they have an
intermediate 10 year ASCVD risk (=5%); have no (self-reported) history of CVD; are not statin users;
and are not yet candidates according to current ACC/AHA guidelines.
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ARTICLE

Portability of 245 polygenic scores when
derived from the UK Biobank and applied
to 9 ancestry groups from the same cohort
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and Bjarni J. Vilhjalmsson.”

64.7%

IOQWW
{'ﬁf-

darker_hair

Iog lipoA

red_hair

2 04 06
United Kingdom

85.7%

Ashkenazi Jewish

log_bilirubij
[
7, Y /
s n
ﬁ"’log_lipoA

abnbrmalfappetite

93.8% 85.6%
| | L
0.504 0.50 t 0.50 Iog log_gammaGT, /"
° |
c > 1 = 1
8 0.251 F0259 ¥ ed hair So259
o !
0.004--+ 0_00_...! 5275 1 ............... 0.004--- -
depressed_for 1w i sensitive_stomach log_age_first_sex
I F_irregular_menstrual_cycle
00 02 04 06 00 02 04 06 00 o y y
United Kingdom United Kingdom United Kingdom
48.6% 25.2%
0.50 0504 log_bilirubihe 0504
- | {
© 3 Ejee'é [ i 2
£ 0.251 8o025{ L’ 9 0.251
B = : v -
o i 8 Hidg log,lipoA|  Z
0.001-; : i 000 A rfa-dnha-'-r -------- 0.001- M
less tanned e ye)dA hai
years of edu fal! Iessftanned AT
darker_skin 1 i E
00 02 04 06 00 02 04 06 00

United Kingdom United Kingdom United Kingdom

2 04 06
United Kingdom

Article
Polygenicscoring accuracy varies across the
geneticancestry continuum
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Polygenicscores (PGSs) have limited portability across different groupings of
individuals (for example, by genetic ancestries and/or social determinants of health),
Open access preventing their equitable use! . PGS portability has typically been assessed

™ Check for updates using asingle aggregate population-level statistic (for example, R?)*, ignoring
inter-individual variation within the population. Here, using a large and diverse Los
Angeles biobank® (ATLAS, n=36,778) along with the UK Biobank® (UKBB, n = 487,409),
we show that PGS accuracy decreases individual-to-individual along the continuum
of geneticancestries’ inall considered populations, even within traditionally labelled
‘homogeneous’ genetic ancestries. The decreasing trend is well captured by a
continuous measure of genetic distance (GD) from the PGS training data: Pearson
correlation of —0.95 between GD and PGS accuracy averaged across 84 traits. When
applying PGS models trained onindividuals labelled as white British in the UKBB
toindividuals with European ancestries in ATLAS, individuals in the furthest GD
decile have 14% lower accuracy relative to the closest decile; notably, the closest

GD decile of individuals with Hispanic Latino American ancestries show similar PGS
performance to the furthest GD decile of individuals with European ancestries. GD is
significantly correlated with PGS estimates themselves for 82 of 84 traits, further
emphasizing the importance of incorporating the continuum of genetic ancestries
in PGS interpretation. Our results highlight the need to move away from discrete
genetic ancestry clusters towards the continuum of genetic ancestries when
considering PGSs.
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Abstract

Genome-wide association studies have shown unequivocally that common complex disorders have a polygenic
genetic architecture and have enabled researchers to identify genetic variants associated with diseases. These
variants can be combined into a polygenic risk score that captures part of an individual's susceptibility to diseases.
Polygenic risk scores have been widely applied in research studies, confirming the association between the scores
and disease status, but their clinical utility has yet to be established. Polygenic risk scores may be used to estimate
an individual's lifetime genetic risk of disease, but the current discriminative ability is low in the general population.
Clinical implementation of polygenic risk score (PRS) may be useful in cohorts where there is a higher prior
probability of disease, for example, in early stages of diseases to assist in diagnosis or to inform treatment choices.
Important considerations are the weaker evidence base in application to non-European ancestry and the challenges
in translating an individual's PRS from a percentile of a normal distribution to a lifetime disease risk. In this review,
we consider how PRS may be informative at different points in the disease trajectory giving examples of progress
in the field and discussing obstacles that need to be addressed before clinical implementation.

Keywords: Genetics, Common disorders, Polygenic risk scores, Prediction, Pharmacogenetics, Risk




Table 2 A brief overview of the steps required to make PRS relevant in a
clinical setting

From: Polygenic risk scores: from research tools to clinical instruments

1. Realistic estimation of predictive ability in clinical populations, which may differ from research samples in disease severity, ancestral diversity, and exposure to environmental risk

2. Identification of the intended purpose of the PRS, which may affect its design and validation, and relevant clinical questions that can be answered, for example, prediction of severity,
course of illness, or response to treatment

3. Recognition that even though not useful for the majority of the population with PRS in the middle of the distribution, the outcome may be relevant for those with high or low PRS, in the tails
of the distribution

4. Clarification if PRS has an additive or interaction effect with established epidemiological or biological risk factors before combining in joint prediction models [88]

5. Engagement of clinicians and service users, to ensure that any application of polygenic risk scores avoids deterministic interpretations and is based on the understanding that PRS is an
indicator, not a precise measure



