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Abstract

Children often show cognitive and affective traits that are similar to their parents. Although this indicates a transmission of
phenotypes from parents to children, little is known about the neural underpinnings of that transmission. Here, we provide
a general overview of neuroimaging studies that explore the similarity between parents and children in terms of brain
structure and function. We notably discuss the aims, designs, and methods of these so-called intergenerational neuroimag-
ing studies, focusing on two main designs: the parent-child design and the multigenerational design. For each design, we
also summarize the major findings, identify the sources of variability between studies, and highlight some limitations and
future directions. We argue that the lack of consensus in defining the parent-child transmission of brain structure and func-
tion leads to measurement heterogeneity, which is a challenge for future studies. Additionally, multigenerational studies
often use measures of family resemblance to estimate the proportion of variance attributed to genetic versus environmental
factors, though this estimate is likely inflated given the frequent lack of control for shared environment. Nonetheless,
intergenerational neuroimaging studies may still have both clinical and theoretical relevance, not because they currently
inform about the etiology of neuromarkers, but rather because they may help identify neuromarkers and test hypotheses
about neuromarkers coming from more standard neuroimaging designs.
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Intergenerational transmission of brain structure and function in humans

What are the neural underpinnings of the intergenerational transmission of cognitive and affective phenotypes?
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o We review neuroimaging studies investigating neural markers of traits transmission.
e Studies have used both parent-child and multigenerational designs.

e Studies provide insights but suffer from lack of methodological standardization.

e Multigenerational studies should also account for shared environment.

Keywords Intergenerational neuroimaging - Cerebral marker
Multigenerational study - Heritability

Introduction

Children often show traits, both cognitive and affective,
that are similar to their parents. For example, parents and
children tend to be similar in terms of general intelligence
(Bjorklund et al. 2009; Black et al. 2009; Anger and Hei-
neck 2010), executive control abilities (Goos et al. 2009;
Pingault et al. 2021), and academic skills (Bernabini et
al. 2021; Braham and Libertus 2017; Navarro et al. 2018;
Brown et al. 2011; van Bergen et al. 2015). Children’s emo-
tional lability and dysregulation are also positively corre-
lated with parental emotional dysregulation (Buckholdt et
al. 2014; Li et al. 2019), as are signs of depression (Gotlib
and Hammen 2009). Therefore, it is largely undisputed that
there is a significant phenotypic similarity between parents
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and children, which suggests an intergenerational transmis-
sion of traits within families.

Over the past two decades, a growing number of studies
have attempted to explore the neural mechanisms underly-
ing this intergenerational transmission of traits. Generally
speaking, this literature follows at least three main goals.
The first goal is to identify the specific measures of neural
similarity that are associated with different types of pheno-
typic similarity between parents and children. Phenotypic
similarity between parents and children certainly suggests
that there is some neural similarity, both at the level of brain
structure and brain function. However, because there is a
large degree of modularity in aspects of brain organization
(Bertolero et al. 2015), neural similarity over generations
is likely to depend on both the trait and the brain regions
investigated. This is perhaps best exemplified by task-based
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neuroimaging, as inferring function from structural neuro-
imaging alone is challenging given that lack of one-to-one
correspondance between traits and brain areas. For exam-
ple, in task-based neuroimaging, the brain regions in which
patterns of activity would be most similar between parents
and children might be different in a language process-
ing task compared to a visuo-spatial task. In other words,
investigating intergenerational similarity of brain structure
and function is often not so much a question of whether
neural similarity exists between parents and children, but
rather a question of where this similarity is the most consis-
tently observed and how it may change with a given trait.
In that sense, neuroimaging designs in which brain similar-
ity is measured across generations are a specific instance
of designs in which the focus is on assessing how specific
brain regions similarly contribute to a given function across
individuals (as compared to traditional designs in which
measures are typically averaged over a sample of partici-
pants) (Etzel et al. 2020).

A second goal of intergenerational neuroimaging stud-
ies is to determine whether neural similarity between par-
ents and children predicts the transmission of traits from the
former to the latter. Although phenotypic similarity is often
observed between parents and children, there is substantial
variability between families. For example, the risk of devel-
oping a cognitive or affective disorder in children is often
increased when the disorder is present in parents (Merikan-
gas et al. 1998; Chen et al. 2017). However, in many cases
children may not develop the disorder expressed by their
parents (Haft et al. 2016), which suggests a lesser neural
similarity in those families than in families in which both
children and parents express the disorder. Comparing neural
similarity between families with different degrees of pheno-
typic similarity may thus provide a window into the brain
mechanisms that support the intergenerational transmission
of phenotypes. In some ways, this is a relatively stringent
test of neuromarkers, as a neural mechanism that would
characterize a trait should be absent (or reduced) when that
trait is not transmitted from parents to children. Intergen-
erational neuroimaging studies may thus also provide com-
plementary information to case-control studies, in which
neuromarkers are typically identified by comparing groups
of individuals with and without the disorder.

Finally, a third goal of some intergenerational neuroim-
aging studies is to estimate the familiality of brain structures
or functions that are associated with a given trait, i.e., the
extent to which the variation in structural or functional brain
measures within a population can be attributed to familial
differences among individuals; (Kendler and Neale 2009).
This becomes possible when studies no longer exclusively
focus on two generations but collect brain measures of
individuals across multiple generations, including siblings,

cousins, grandparents, and more distant relatives (Roalf et
al. 2015; Sudre et al. 2017; van der Lee et al. 2017; Bas-
Hoogendam et al. 2018a). Familiality can then be estimated
based on the varied degrees of relatedness within a fam-
ily structure (Winkler et al. 2010; Tissier et al. 2017; Bas-
Hoogendam et al. 2018b). Note that these studies typically
do not use the term familiality but rather heritability, which
is typically defined as the extent to which the variation in a
measure within a population can be attributed to genetic dif-
ferences among individuals. However, because genetic and
environmental variations remain correlated even in multi-
generational designs (more related individuals tend to live in
more similar environments), it is unclear whether multigen-
erational studies may disentangle between those influences.
Therefore, we chose to use the more neutral term familiality
in the present review. The relation between familiality and
heritability will be discussed in Sect. “Advantages and limi-
tations of multigenerational studies”.

In sum, examining the brain mechanisms mediating the
intergenerational transmission of behavioral phenotypes
may have both clinical and theoretical relevance. As said
above, this is not so much because these studies may inform
about the etiology of neuromarkers (typically these studies
cannot dissociate between genetic or environmental influ-
ences, see Sect. “Advantages and limitations of multigen-
erational studies”). But intergenerational neuroimaging
studies may be most useful because these could provide
an interesting way to either identify neuromarkers or test
hypotheses about neuromarkers coming from more standard
neuroimaging designs and case-control studies. For exam-
ple, intergenerational studies may investigate similarity in
brain structure and function across two generations differ-
ently affected by a condition or explore the familiality of
brain structure and function that are related to traits within
expanded families.

The present review

The present paper is not the first review of the literature on
intergenerational neuroimaging. Ho et al. (2016) were the
first to focus on these studies and to conceptualize some
critical aspects of the designs, methods, and key questions.
However, as this narrative review will make clear, the field
has expanded since that seminal review and a still-limited
but growing number of studies have begun to examine the
intergenerational transmission of a variety of traits, includ-
ing those involved in cognitive and academic abilities
(i.e., 22 studies reviewed here were not published at the
time of Ho et al.’s review, see Tables 1 and 2). Since Ho
et al. (2016), studies have notably also used a greater vari-
ety of techniques, such as diffusion tensor imaging (DTI),
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electroencephalography (EEG), as well as functional and
structural magnetic resonance imaging (respectively, fMRI
and sMRI).

The goal of the present review is twofold. The primary
aim is to discuss the experimental designs and measures
that are used to assess neural similarity in intergenerational
studies, as well as those that are not used yet but could be
directions for future studies. In doing so, we will build on
the early conceptualization put forward by Ho et al. (2016)
and extend it to other dimensions, for example covering
how neural similarity can be envisioned in terms of spa-
tial and temporal measures and in terms of univariate and
multivariate measures. A secondary aim is to provide an
update of Ho et al. (2016) and critically evaluate the main
findings obtained by intergenerational neuroimaging stud-
ies to date, especially as they relate to the three goals of
intergenerational studies detailed above. Although the pres-
ent study is not a systematic meta-analysis of the literature,
we also aim to provide detailed information regarding each
study discussed here so that readers may evaluate the find-
ings. As mentioned above, intergenerational neuroimaging
studies have focused on investigating similarity over two
generations of individuals (i.e., parent-child design) or over
multiple generations (i.e., multigenerational design). There-
fore, the methods, measures, and findings from both types
of studies are reviewed in two separate parts.

Selection of studies reviewed

The PRISMA flow diagram showing the selection of stud-
ies discussed in this review is shown in Fig. 1. All stud-
ies discussed in this review were identified from PubMed
in May 2023 using the following search terms, which
had to be in either the title or abstract of the results:
“((mother daughter|Title/Abstract]) OR (parent child[Title/
Abstract]) OR (multigenerational[Title/Abstract]) OR (fam-
ily study[Title/Abstract]) OR (family-based study[Title/
Abstract]) OR (intergenerational[Title/Abstract]) AND
((neuroimaging[Title/Abstract]) OR (mri[Title/Abstract])
OR (EEG[Title/Abstract]) OR (FMRI[Title/Abstract])
OR (Voxel-Based Morphometry[Title/Abstract]) OR
(MEG](Title/Abstract]) OR (DTI[Title/Abstract]) OR (brain
similarity[Title/Abstract]) OR (brain concordance[Title/
Abstract])”. We only considered articles published between
the years 2000 and 2023. These were supplemented by 3
more papers found with additional searches on Google
scholar, using similar search terms. Moreover, we also
examined all references from the review by Ho et al. (2016).
Finally, the study by Fehlbaum et al. (2022) is one of the
most recent papers published on intergenerational neuroim-
aging, so we also examined references cited in this paper.
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All of these papers were screened with the following
inclusion criteria:

(1) Participants scanned had to be humans.

(2) Both related parents and their children (at least) had to
be brain-scanned.

(3) Brain similarity between the related dyads had to be
assessed OR heritability (i.e., familiality in the context
of the present review) of brain measures from parent to
child had to be assessed.

Exclusion criteria were:

(1) Hyperscanning studies or studies looking at the brains
during interaction between a parent and their child. We
were interested in the downward transmission from par-
ent to child, and not the bidirectional effects of parent-
child interaction.

(2) Studies considering children and parents as two differ-
ent groups (e.g., one group of affected children com-
pared to a group of first-degree relatives). In such cases,
the focus of the study is not intergenerational transmis-
sion per se but rather dyad status (i.e., proband versus
first-degree).

Following these criteria, we considered 31 studies: 16 stud-
ies on exclusively parent-child dyads (see Table 1) and 15
studies using a multigenerational design (see Table 2). We
begin by discussing parent-child studies before turning to
multigenerational studies.

Parent-child studies

The overarching goal of parent-child studies is to measure
brain similarity between a given sample of parents and their
children, i.e., across two generations. Measures of brain
similarity may be further associated with the transmission
of a phenotype of interest. Below we detail the variety of
measures, designs, and analyses that have been employed to
assess brain similarity between parents and children. Table 1
lists the parent-child studies identified in this review, with
their main topics of interest, measures, dependent variables,
and findings, as well as a number of indicators that can be
used to assess the confidence in their results (e.g., sample
size, presence of preregistration, correction for multiple
comparisons).

Measures

Broadly speaking, similarity between two brains can be
characterized at the structural and functional levels. These
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Identification of studies via databases and registers

Records removed before screening (n=10

duplicate records)

Records excluded (n=363):

* Non-human primates (n=4)

* Hyperscanning (n=11)

*  Only the child is scanned (n=109)
.| * Only the parent is scanned (n=23)

Records identified from:
c *  PubMed (n=281)
2 * References from Fehlbaum et al.
S (2022) (n=105)
= * References from Ho et al. (2016)
S (n=15)
=2 * Supplementary searches on Google
Scholar (n=3)
§ Records screened (n=394)
2
A 4
® Studies included in review (n=31):
3 * Parent-child studies (n=16)
§ * Multigenerational studies (n=15)

* Studies on another topic (eg. GWA
studies, scanning of other body parts)
(n=195)

* No direct assessment of related
parent-child similarity (n=16)

* Reviews, protocols or editorials (n=5)

Fig. 1 PRISMA flow diagram showing the selection of studies discussed in this review

two levels provide complementary information with regard
to the question of whether two brains are similar or different
(Takagi et al. 2021). Structural similarity concerns similar-
ity in the anatomical properties of the brain, which is neces-
sarily measured in the three-dimensional space. A number
of measures can be considered to investigate structural
similarity, including grey matter density and volume, corti-
cal thickness, cortical surface area, local gyrification, sulcal
morphology, and organization of white matter tracts. The
relation between these measures is not always clear (Win-
kler et al. 2010) and each may be differently affected by
development (Fehlbaum et al. 2022). Thus, different struc-
tural measures may provide complementary information
(Ozalay et al. 2016). To date, however, only three neuroim-
aging studies have combined two or more structural features

to investigate structural similarity (Ozalay et al. 2016; Fehl-
baum et al. 2022; Minami et al. 2022).

In contrast to structural similarity, functional similarity
concerns similarity in brain activity. These functional prop-
erties can be evaluated in the spatial as well as the temporal
domains, and functional similarity may therefore concern
both of these domains. For instance, while Colich et al.
(2017) focused on similarity of spatial patterns of activity,
Kim et al. (2021) and Su et al. (2022) studied voxel-wise
similarity of brain activity across time. Finally, using elec-
troencephalography (EEG), Hill et al. (2020) and Wang et
al. (2018) calculated frontal alpha asymmetry score, which
is the difference between frontal right and left alpha activ-
ity averaged across time (the focus being on a difference
between hemispheres).

@ Springer
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Fig. 2 Statistical analyses in parent-child neuroimaging studies. (A)
Univariate data analysis. The brain measure (mp for the parent, mc for
the child) is considered at the voxel level or averaged at the ROI level.
A correlation is calculated between measures of parents and children,
either in the ROI or at the voxel-wise level. (B) Multivariate data anal-
ysis. For each parent-child dyad, a correlation is calculated between
multivariate patterns of brain measures at the ROI or searchlight level,

Functional similarity may be measured at rest or during a
task. As already pointed out by Ho et al. (2016) in their semi-
nal review, an advantage of task-related measures is that they
allow for the assessment of brain activity (or connectivity)
that is associated with a behavior of interest. For instance,
Colich et al. (2017) used a monetary incentive delay task to
evaluate how neural similarity relates to depression, while
Su et al. (2022) asked participants to watch an emotionally
negative movie in the scanner to study how neural similar-
ity mediates the link between family environment and child
psychological wellbeing. A drawback of task-related mea-
sures, however, is that the use of different tasks between
studies may make it difficult to compare results associated
with a phenotype of interest. Comparability between studies
is an advantage of resting-state studies (Wang et al. 2018;
Hill et al. 2020; Takagi et al. 2021; Kim et al. 2021), which
measure brain activity of participants in the absence of a
task (van Diessen et al. 2015; Lv et al. 2018). Resting-state
studies may also be more adapted to pediatric neuroimaging,
as task-based neuroimaging may be challenging with young
children (Raschle et al. 2012). However, resting-state stud-
ies do not allow for the study of similarity in brain networks
associated to a phenotype of interest. They also make it dif-
ficult to control for the behavior of subjects (van Diessen
et al. 2015). That is, each subject may experience different
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resulting in a correlation for the ROI or the voxel. The searchlight is a
radius sphere that runs through the whole parent and child brains and
centers on each voxel of the brain. (C) Temporal approach on func-
tional data. For each voxel, a correlation is calculated between time
series of the parent and the child. As an output, for each dyad, a map
of voxel per voxel correlations is obtained. Abbreviations: ROI; region
of interest

mental states, which might influence activity of default
mode networks (and thus intergenerational similarity).

Experimental designs

By definition, all parent-child neuroimaging studies share a
common interest in measuring the neural similarity between
a parent and their child (i.e., a related dyad). However,
depending on their objectives, studies may vary with respect
to the baseline against which that similarity is compared
to (see Table 1). For example, a number of studies have
explored whether differences in similarity between related
dyads are linked to some phenotype of interest. Such stud-
ies have typically measured similarity in regions associated
with a variety of traits (Bilgi et al. 2015; Wang et al. 2018;
Hill et al. 2020; Vandermosten et al. 2020). Others have fol-
lowed dyads longitudinally (Kim et al. 2021) or compared
similarity between different combinations of related dyads
(e.g., father-child versus mother-child) (Yamagata et al.
2016; Minami et al. 2022). As stated earlier, a frequent goal
of parent-child studies is to test whether neural similarity
between parents and children is associated with the transmis-
sion of a disorder. Several studies have therefore compared
related dyads in which the parent is (or was) affected by a
disorder to related dyads in which the parent is (or was) not
affected (Casey et al. 2007; Foland-Ross et al. 2016; Ozalay
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etal. 2016; Colich et al. 2017; Abraham et al. 2020). Finally,
studies may also investigate what is unique to the similar-
ity between parents and children from related dyads. These
studies have typically compared related dyads to dyads of
parents and children that were unrelated (Ahtam et al. 2021;
Takagi et al. 2021; Fehlbaum et al. 2022; Su et al. 2022).
Overall, these different choices introduce some degree of
variability between studies that need to be considered when
examining the literature. For example, studies exclusively
assessing brain similarity among related dyads do not pro-
vide any information regarding how specific that similarity
is to related (versus unrelated) individuals. This specificity
can only be assessed by using unrelated dyads as baseline.
As another example, studies that examine the similarity of
dyads over time or between different types of parent-child
dyads are uniquely positioned to inform about factors mod-
erating similarity, such as age, sex, or presence of a disorder.
We discuss in greater detail the limitations of different types
of design in a later section (see Sect. “Limitations”).

Statistical analyses

Although brain similarity can be conceptualized at both
the spatial and the temporal level (see above), a majority
of studies have focused on spatial analyses. The most fre-
quently encountered index of brain similarity across these
studies is a correlation between a given brain measure in
parents and in children (Casey et al. 2007; Foland-Ross et
al. 2016; Yamagata et al. 2016; Ozalay et al. 2016; Wang et
al. 2018; Hill et al. 2020; Vandermosten et al. 2020; Takagi
etal. 2021; Fehlbaum et al. 2022; Minami et al. 2022). Brain
measures often come from the average activity or structural
index of several voxels within given regions of interest
(ROIs) (Casey et al. 2007; Foland-Ross et al. 2016; Ozalay
et al. 2016; Wang et al. 2018; Hill et al. 2020; Vandermo-
sten et al. 2020; Takagi et al. 2021; Fehlbaum et al. 2022;
Minami et al. 2022), but they may also be computed voxel-
by-voxel across ROIs (Yamagata et al. 2016) or across the
whole brain (Bilgi et al. 2015). Each method has its advan-
tages and disadvantages (Poldrack 2007; Kriegeskorte et al.
2009). While ROI analyses may limit the number of mul-
tiple comparisons, they are subject to biases depending on
the way the ROIs were selected. In contrast, while whole-
brain analyses allow researchers to explore relations across
the entire brain without a priori constraints, they raise issues
about multiple comparisons which need to be adequately
controlled.

The studies described above all employ univariate meth-
ods. That is, they only consider a given voxel or a given
ROI at a time when investigating the correlation between
the parental measure and the child measure (see Fig. 2A).
Yet, the past two decades have seen the emergence of
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multivariate methods in the neuroimaging field, which may
enhance power and reliability (Kragel et al. 2021). To our
knowledge, only one study has taken advantage of such
methods. Colich et al. (2017) evaluated similarity between
parents and children by calculating the correlation between
voxel-wise patterns of task-related activity in parents and
children in given ROIs, thus obtaining a correlation for each
dyad as an index of similarity (see Fig. 2B). In theory, this
method could be extended to whole-brain analyses using a
searchlight approach, i.e., by defining a local neighborhood
of voxels centered around each voxel in the brain volume
and running a correlation of multivariate pattern of activity
between parents and children within each neighborhood.

A few studies have investigated parent-child similarity
in brain function by focusing on similarity in the temporal
rather than the spatial domain (see Fig. 2C). This notably
allows one to use temporal data from resting-state (Kim et
al. 2021) or task-related design without the need to compare
different conditions (Su et al. 2022). These studies typi-
cally measure the correlation between the time course of
activity in parents and children for each voxel in the brain.
This leads to a map of voxel-wise correlations for each
dyad, which can be statistically compared between groups.
Note that this approach can also be combined with a ROI
approach to limit the multiple comparison problem (Kim et
al. 2021; see below).

Finally, some studies have examined parent-child simi-
larity in brain connectivity rather than localized activity or
structure. Often, connectivity analyses consist in building
a connectivity matrix between several ROIs (Abraham et
al. 2020; Takagi et al. 2021), or between ROIs and voxels
across the whole brain (Kim et al. 2021). Such connectiv-
ity can be structural, for example involving white matter
fiber connections (Abraham et al. 2020), or functional, for
example involving functional coupling of activity between
regions (Takagi et al. 2021; Kim et al. 2021; Su et al. 2022).
Parent-child similarity is then typically assessed by calcu-
lating correlations between the whole matrices of parents
and children (Takagi et al. 2021; Kim et al. 2021) or for
each single fiber connection (Abraham et al. 2020). Su et
al. (2022) used another strategy and directly calculated the
correlation between the time series of a seed from one par-
ticipant and the time series of voxels across the whole brain
from another participant. Matrices of correlations were
then averaged across participants. Finally, in their temporal
voxel-wise analysis (see above), Kim et al. (2021) synchro-
nized the time series within parent and child dyads for each
voxel, such that time series should be similar when connec-
tivity patterns are similar. Voxel-wise correlation of time
series was then used as an estimate of parent-child similarity
in functional connectivity.
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Thus, parent-child neuroimaging studies have employed
diverse methods and statistical analyses, which have an
impact on the very definition of brain similarity across stud-
ies. Studies have also focused on brain similarity in the con-
text of a variety of traits, which we review below.

Main findings

As can be seen from Table 1, most studies have investigated
the transmission of traits such as mood and depression while
a smaller number of studies have focused on reading and
attention. Table 1 lists the main conclusions from each study,
along with a number of indicators that can be used to assess
the confidence in the results, such as sample size, presence
of preregistration, or correction for multiple comparisons.
Clearly, studies have employed a variety of techniques and
analytic strategies, which make it relatively difficult to com-
pare their findings with each other. It is nonetheless interest-
ing to examine how the body of literature relates to the main
objectives that are spelled out at the outset of this review.

We argued that a first goal of intergenerational studies is
to identify the measures of neural similarity that are associ-
ated with different types of phenotypic similarity between
parents and children, with the idea that neural similarity
may depend on both the trait and the brain regions inves-
tigated. Overall, studies have indeed found structural and
functional similarity between parents and children in a num-
ber of brain regions that they have associated with specific
traits. For example, Yamagata et al. (2016) linked parent-
daughter similarity within the corticolimbic circuitry to
intergenerational effects on mood regulation, Fehlbaum et
al. (2022) and Vandermosten et al. (2020) associated parent-
child similarity in left-hemispheric regions and pathways
to the transmission of reading skills, and Hill et al. (2020)
argued that similarity in EEG frontal alpha asymmetry may
reflect similarity in emotion regulation. Yet, it is difficult to
assess the specificity of these measures of similarity for the
given trait, as most studies have focused on specific ROIs
and often rely on reverse inferences to speculate on what
the similarity might mean. Investigating trait-specific neural
similarity would require either functional studies compar-
ing how similarity differ in different tasks or studies more
generally linking similarity to individual differences in
behavioral measures of traits, though those studies would
undoubtedly require a significant increase in sample size
compared to current studies (Marek et al. 2022).

We also argued that a second goal of parent-child studies
is to determine whether neural similarity between parents
and children predicts the transmission of traits from par-
ents to children. As shown in Table 1, a few studies have
started to explore this question, mainly by comparing dyads
in which a condition is transmitted from parents to children

(or has a greater risk of being transmitted) to healthy dyads.
For example, several studies have compared dyads in which
mothers have a history of depression to dyads with no such
history (Foland-Ross et al. 2016; Ozalay et al. 2016; Colich
et al. 2017; Abraham et al. 2020), showing differences in
brain similarity between those cases (with the exception of
Colich et al. 2017). Casey et al. (2007) used a design in
which parents and children both affected by ADHD were
compared to healthy controls, suggesting differences in
prefrontal similarity as a function of the dyad status. Note
that this latter study did not compare dyads in which ADHD
was transmitted versus was not transmitted from parents to
children, though this would have been a critical test of the
transmission of neuromarkers of ADHD. Still, these studies
are interesting proofs of concept for the use of parent-child
designs to explore neuromarkers. However, they remain
scarce and likely underpowered given that most of them rely
on univariate correlations between parents and children (see
Sect. “Statistical analyses”) in relatively small sample sizes.
As pointed out above, studies also currently lack designs
comparing dyads in which a condition is transmitted versus
is not transmitted from parents to children, which is a more
stringent test of neuromarkers than comparing affected ver-
sus unaffected dyads.

Finally, parent-child designs allow researchers to examine
whether neural similarity is moderated by other variables.
For instance, Abraham et al. (2020) found that parent-child
neural similarity in WM tracts increased with a measure of
parental care. Although this might suggest an effect of care-
giving on parent-child similarity (as the authors suggest),
it is important to keep in mind that such designs are not
genetically-sensitive. Therefore, it is unclear whether such
moderating effects result from an environmental influence
(e.g., caregiving itself) or from a genetic influence (e.g.,
parents who report more parental care might differ geneti-
cally from parents who report less parental care). This issue
is also present in studies that investigate whether similarity
is related to parental education (Kim et al. 2021) or other
parental characteristics (Wang et al. 2018). More gener-
ally, the issue of whether intergenerational designs might
be able to dissociate genetic from environmental effects is
discussed later (see Sect. “Advantages and limitations of
multigenerational studies”).

Factors influencing parent-child brain similarity

Parent-child studies have suggested that several factors may
influence neural transmission from parents to children. First,
parent-child neural similarity may depend on the age of chil-
dren (Takagi et al. 2021; Kim et al. 2021) or their pubertal
status (Colich et al. 2017). Specifically, studies suggest that
similarity tends to increase as children get older, which is
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likely to reflect neurodevelopmental changes. Indeed, human
brain development is protracted, changing in structure dur-
ing adolescence and into early adulthood (Paus 2005; Stiles
and Jernigan 2010; Houston et al. 2014). To some extent, it
is not surprising that as children’s brain slowly matures, it
becomes more alike the parental brain, which has already
reached maturity. It is also likely that genetic effects on
brain function may increase over development (Lenroot
and Giedd 2008). Indeed, as children get older, they have
more opportunities to seek an environment and experiences
in line with their genetic predispositions. Environmental
feedback might in turn reinforce this tendency, thereby con-
tributing to an increase in intergenerational similarity with
age. In any case, more developmental studies are needed to
investigate how the intergenerational transmission of brain
structure and function is affected by developmental trajecto-
ries. Not only would longitudinal studies allow for follow-
ing at-risk participants as they develop or not the disorder,
but these studies could also help determine whether neural
phenotypes of transmission are vulnerability factors and not
simply epiphenomena. As highlighted by Ho et al. (2016),
such studies might also investigate whether developmen-
tal trajectories of cerebral markers of interest are linear or
nonlinear.

Second, similarity may depend on the sex of both parent
and child, with several studies showing female-specific sim-
ilarity in brain regions associated with emotion regulation
(Yamagataetal. 2016; Minami etal. 2022). It has been argued
that this female-specific transmission of neuromarkers may
parallel the female-specific transmission of depressive phe-
notypes, maternal depressive symptoms being correlated
with symptoms in daughters but not in sons (Yamagata et al.
2016). Note that this might come from the influence of both
environmental and genetic factors. For example, a mother
might be more similar to her child than a father because she
provides the prenatal environment to their child (Minami
et al. 2022). Moreover, a mother might be more similar to
her daughter because parents spend more time with same-
sex children (Endendijk et al. 2018), which could ultimately
lead to same-sex modeling and higher same-sex similar-
ity between parents and children (Lewis et al. 2011). It is
also possible that this sex-specific transmission may have
a genetic origin, known as the parent-of-origin effect. Spe-
cifically, the impact of an allele on phenotype depends on
whether the allele is inherited from the mother or the father
(Ho et al. 2016). This parent-of origin effect can be sex-
specific, with a differential gene expression depending on
the sex of the child (Gregg et al. 2010), suggesting that for
daughters but not sons, genes linked to depression may have
more impact on the child phenotype when inherited from
the mother than the father. Clearly, intergenerational studies
cannot disentangle between these possibilities. Nonetheless,
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the influence of sex on the intergenerational transmission
of brain circuits suggests that studies should systematically
control for the sex of the parent and the child in the analyses
(as well as the age, see above).

Finally, some other factors may influence parent-child
similarity, such as parental education (Kim et al. 2021),
parental care (Abraham et al. 2020), and parental psycho-
logical dispositions (Wang et al. 2018). As stated earlier,
however, it remains unclear to what extent these factors
explain neural similarity over and above genetic measures
(which are not collected in the parent-child studies reviewed
here).

Limitations

We highlight here a few limitations of current studies that
investigate the parent-child transmission of brain structure
and function. First, parent-child neuroimaging studies are
characterized by a wide diversity of techniques, measures,
and ways to assess neural similarity. Such a heterogene-
ity raises concerns regarding the replicability of findings.
It might be beneficial to find some consensus regarding
methodological practices. The use of standardized pre-pro-
cessing protocols and standardized tasks in fMRI studies
is necessary for mega-analyses (Ho et al. 2016). In sMRI
studies, the same structural features should systematically
be used from one study to the next to enhance comparabil-
ity. For instance, Winkler et al. (2010) suggested that for
genetic neuroimaging studies, cortical thickness and surface
area should be preferred over grey matter volume. Indeed,
the authors showed that surface area and cortical thickness
are independent from one another and have distinct genetic
origins, and thus provide complementary information. In
contrast, grey matter volume is genetically and environmen-
tally correlated to surface area and cortical thickness, which
makes this measure relatively unspecific compared to oth-
ers. Another issue with many studies is that the hypotheses,
design, and analysis strategy are often not preregistered (see
Table 1). Neuroimaging studies are often characterized by
a large number of researcher degrees of freedom and pre-
registration would be beneficial to limit analytic flexibility
and increase confidence in the results (Poldrack et al. 2017).
Finally, sample sizes of parent-child studies tend to be rela-
tively small, ranging from 16 to 84 participants in the studies
included in Table 1. Though the power of a given study to
detect similarity will depend on a number of factors, includ-
ing experimental design and how similarity is defined, there
is a growing awareness that neuroimaging studies focusing
on univariate brain-behavior associations are often under-
powered and require much larger sample sizes (Marek et
al. 2022). Although parent-child studies do not necessar-
ily involve univariate brain-behavior associations, they
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often define similarity using univariate correlations of brain
structure and function between parents and children (see
Fig. 1A). It is therefore likely that these studies are under-
powered, which questions the replicability of their findings.
Future studies might either need to significantly increase
sample sizes when relying on parent-child correlations, or
turn to other measures of similarity that might be more sen-
sitive, such as multivariate pattern similarity (see Fig. 1B)
(Spisak et al. 2023).

Second, parent-child studies have largely focused on
intergenerational transmission based on a small number
of hypothesis-driven ROIs. Although ROI-based analyses
might enhance power by limiting the number of multiple
comparisons (Saxe et al. 2006), a drawback of this approach
is that it limits the discovery of similarity in other regions
of the brain. For example, it is possible that brain similarity
might be observed in regions that are not necessarily part
of the canonical brain circuit involved in a given function.
Studies using whole-brain voxel-wise analyses allow for
such exploration, which has already been used successfully
in some structural studies (Bilgi et al. 2015; Yamagata et
al. 2016), but also in functional studies using voxel-wise
correlation of time series (Kim et al. 2021; Su et al. 2022).
Another possibility for a voxel-wise analysis of functional
data is the use of a whole-brain multivariate analysis using
a searchlight approach (Etzel et al. 2013). Such multivariate
analyses have the advantage of being sensitive to multidi-
mensional processes (Davis et al. 2014) as well as to subtle
changes in multivariate patterns (Yang et al. 2012), there-
fore capturing more information than univariate analyses.
In other words, whole-brain multivariate analyses might be
informative in parent-child neuroimaging studies.

Third, an important limitation of several studies (Bilgi
et al. 2015; Yamagata et al. 2016; Wang et al. 2018; Hill
et al. 2020; Vandermosten et al. 2020; Kim et al. 2021) is
that sometimes parent-child similarity is only investigated
in related dyads and not compared to unrelated dyads. How-
ever, even two unrelated brains may show some degree of
similarity in either structure or function. For example, typi-
cal reading development is associated with functional and
structural changes in a left-hemispheric network of regions,
including the occipitotemporal, temporoparietal and inferior
frontal areas (Schlaggar and McCandliss 2007). Thus, simi-
larity in this network is expected in the population and only
a comparison between related and unrelated pairs would
allow one to conclude on intergenerational transmission.
This is particularly true if similarity is measured from task-
related activity, as even unrelated participants may show
similar activity in a number of brain regions associated with
the task. In other words, measuring parent-child similarity
by only focusing on related dyads may raise the risk of over-
estimating what is transmitted from parents to children.

Multigenerational studies

Parent-child studies only focus on two generations of indi-
viduals, rather than on a broader family system. However,
this broader family system is also known to influence child
development (Rogers et al. 2022). Another type of intergen-
erational studies—multigenerational studies—specifically
focuses on expanded families and investigates several gen-
erations of related individuals at the same time (Almasy and
Blangero 1998). Table 2 lists the multigenerational studies
identified in this review, with their main topics of interest,
measures, dependent variables, and findings, as well as a
number of indicators that can be used to assess the confi-
dence in their results (e.g., sample size, presence of prereg-
istration, correction for multiple comparisons).

Measures, designs, and analyses

Multigenerational studies (see Table 2) recruit individuals
from multiple generations within either healthy or multi-
plex families (i.e., families with several members affected
by a disorder of interest). Although the composition of
the sample may vary between studies, participants typi-
cally include parents and offsprings as well as siblings and
extended family members (e.g., grandparents, aunts, uncles,
cousins). A critical feature of multigenerational neuroimag-
ing studies is that neural measures are collected for each
participant in addition to behavioral phenotype. Much like
parent-child studies, several neural measures may be con-
sidered (see Sect. “Measures”). Although most studies have
focused on structural measures (Winkler et al. 2010; Fears
etal. 2014; McKay et al. 2014; Roalf et al. 2015; Sudre et al.
2017; van der Lee et al. 2017; Bas-Hoogendam et al. 2018b;
Prasad et al. 2022; Hofer et al. 2022), others have investi-
gated functional measures, either at rest (Sudre et al. 2017,
Bas-Hoogendam et al. 2021) or during a task (Harrewijn et
al. 2018a, b; Bas-Hoogendam et al. 2019, 2020a, b). The
typical analysis strategy involves three main steps. First,
the degree of relatedness between family members is repre-
sented using a kinship matrix, which includes the theoreti-
cal coefficients of familial relatedness between all pairs of
individuals (e.g., 1 for the similarity with oneself, ' for par-
ents and full siblings; % for grandparents or half-siblings;
1/8 for cousins; and 0 for unrelated individuals). Second,
brain measures (collected either at the voxel or ROI level)
are considered dependent variables in linear mixed models
that often include as fixed effects covariates such as sex and
age and as random effects the familial relatedness between
individuals, represented by the kinship matrix (see Fig. 3)
(Almasy and Blangero 1998; Tissier et al. 2017). Third, in
this design, familiality can be estimated for each voxel or
for each ROI as the ratio of the additive familial variance
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Fig. 3 Statistical analysis in multigenerational neuroimaging studies.
Example for a three-generation pedigree. The degree of relatedness
between the family members is summarized in a kinship matrix. The
brain measure (mi) for each family member is considered at the voxel
level or averaged at the ROI level. The brain measure is considered
a dependent variable in a linear mixed model, with degree of famil-
ial relatedness as a random effect. A maximum likelihood estimation

(estimated from the kinship matrix) to the total phenotypic
variance. It should be noted that most studies discussed here
do not refer to familiality but rather to heritability (the pro-
portion of phenotypic variance that is due to genetic fac-
tors versus environmental factors). However, as we will see
later, whether an estimate of familiality can be interpreted
as an estimate of heritability depends on a number of factors
that are not always well controlled in studies. For that rea-
son, we chose to use the more neutral term familiality when
reporting the results of these studies.

Main findings

The main findings from multigenerational studies are shown
in Table 2. The size and familial structure of samples in these
studies allow researchers to typically focus on two dimen-
sions. First, they may investigate associations between the
occurrence of a trait and a specific neuromarker among
family members. For example, studies have found that grey
matter characteristics and/or functional activity in various
regions are associated with social anxiety (SA) (Harrewijn
et al. 2018a, b; Bas-Hoogendam et al. 2018b, 2019, 2020a,
b, 2021) or ADHD (Sudre et al. 2017). Second, these stud-
ies may estimate the familiality of neuromarkers, i.e., the
extent to which variation in structural or functional brain
measures can be attributed to familial differences among
individuals. For instance, among studies focusing on the
transmission of psychiatric and anxiety-related disorders,
several have estimated familiality within the Leiden Family
Lab Study on Social Anxiety Disorder (LFLSAD) sample
(Bas-Hoogendam et al. 2018a). This has been done for grey
matter (Bas-Hoogendam et al. 2018b), activity associated
with social processing in the fronto-temporal system (Bas-
Hoogendam et al. 2020a), hippocampus and amygdala (Bas-
Hoogendam et al. 2019; Bas-Hoogendam et al. 2020b), as
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of the phenotypic (0?7) and familial (U%)Variances is implemented,
and familiality is calculated as the ratio of the familial variance to the
total phenotypic variance. As an output, a measure of familiality (often
termed heritability in studies, see Sect. “Advantages and limitations of
multigenerational studies”) is calculated either based on a voxel-wise
map or ROI. Abbreviations: ROI; region of interest

well as functional connectivity within attentional process-
ing networks showing association with social anxiety (Bas-
Hoogendam et al. 2021). Note that this contrasts with EEG
studies of social anxiety, which have failed to find evidence
for a familiality of brain potentials (Harrewijn et al. 2018b)
or brain synchronization (Harrewijn et al. 2018a).

Aside from anxiety disorders, multigenerational studies
have also investigated neural markers of the transmission
of schizophrenia and bipolar disorders, showing familiality
in several subcortical and limbic regions (Roalf et al. 2015;
Fears et al. 2014) and white matter tracts (Prasad et al. 2022;
Fears et al. 2014). Finally, other studies have investigated
the transmission of structural brain characteristics in healthy
families, showing familiality in total brain volume, surface
area, average cortical thickness, voxel-based morphometry
and grey matter volume (Winkler et al. 2010; McKay et al.
2014; van der Lee et al. 2017) as well as global fractional
anisotropy (McKay et al. 2014) and R2* iron (i.e., a relax-
ation rate indicator of the concentration of iron) (Hofer et al.
2022). Overall, multigenerational studies suggest that brain
structure and function appear to be under relatively strong
familial influence.

Advantages and limitations of multigenerational
studies

A multigenerational design has a number of advantages
compared to a parent-child design. For instance, their rel-
atively large sample size (i.e., ranging from about 100 to
1,000 participants in Table 2) typically allows for better
estimates of associations between traits and neuromarkers
than what is possible from parent-child studies (which tend
to have much smaller sample sizes, see Table 1). In theory,
measuring neural similarity between parents and children as
is typically done in parent-child designs (see Fig. 2) is also
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possible in multigenerational studies. However, such anal-
yses are rarely conducted with multigenerational designs,
researchers focusing instead on brain-behavior associa-
tions and estimation of familiality across the entire sample.
Note that such designs, which typically include males and
females, may also allow studying the parent-of-origin effect
as the respective contribution of maternal and paternal
familial effects may be partitioned (Wu et al. 2021).

Multigenerational family studies, however, also have
a number of limitations. First, as discussed above, multi-
generational studies usually rely on larger samples than
parent-child designs, and data collection is both cost- and
time-intensive (Bas-Hoogendam et al. 2016). This is why
studies to date have largely relied on already-existing data-
sets of unrelated individuals (Hofer et al. 2022; Paus et al.
2015) or have focused on nonhuman primates (Fears et
al. 2009; Fox et al. 2015, 2018; Tromp et al. 2019), which
allows researchers to collect many phenotypic measures
over many generations of large pedigrees with distant
familial relationships (Fears et al. 2009). However, studying
non-human primates makes it difficult to investigate human
disorders, and markers found in non-human primates might
not be applicable to humans and specific disorders. Second,
multigenerational studies have mostly focused on a few
extended pedigrees, which might limit the generalizability
of the results (van der Lee et al. 2017). Third, most multi-
generational studies have also focused on pedigrees of indi-
viduals affected by a given disorder, without comparing the
results to pedigrees of healthy comparison subjects (Roalf et
al. 2015). This may raise concerns regarding the specificity
of the markers for the disorder as compared to the general
population (Bas-Hoogendam et al. 2019).

Finally, a major issue with multigenerational studies lies
in the interpretation of familiality. To our knowledge, all
studies reviewed here equate this notion with that of herita-
bility, which describes the proportion of variance that is due
to genetic factors versus environmental factors. For famili-
ality to be equivalent to heritability, however, environmen-
tal effects would need to be exclusively individual and
unshared among family members, which is an assumption
that is clearly wrong. Indeed, genetic similarity between
family members is almost systematically confounded by
environmental similarity (i.e., family members who are the
closest genetically tend to live in more similar environments
than family members who are more distant genetically).
Thus, not taking into account shared environment among
family members may lead to inflated estimates of heritabil-
ity (Almasy and Blangero 2010). Note that it is in theory
possible to get more accurate estimates of heritability from
multigenerational designs, but this requires adding environ-
mental covariates that are potentially confounded by genetic
transmission when calculating familiality to estimate shared

environmental influences. However, this has not been done
comprehensively in neuroimaging studies, as only two stud-
ies within the body of literature reviewed here have added
environmental covariates when estimating heritability, such
as mothers highest education (Prasad et al. 2022) and coun-
try and years of education (Fears et al. 2014) (see Table 2).
More generally, it would be advisable for future studies
interested in estimating heritability (and not only familial-
ity) of neuromarkers to include in their model as many envi-
ronmental covariates as possible, for example information
regarding socioeconomic status, lifestyle factors, as well as
which individuals in the study share the same household or
were reared together (Almasy and Blangero 2010). Even
more accurate estimates of heritability could be gathered by
including in the sample different individuals who are known
to have varying degrees of genetic and environmental simi-
larity (e.g., biological siblings reared together versus apart,
monozygotic versus dizygotic twins).

Conclusion

There is little doubt that identifying the cerebral markers
underlying the intergenerational transmission of cognitive
and affective traits is of both theoretical and clinical signifi-
cance. Both parent-child and multigenerational studies may
help with this objective, each design providing complemen-
tary information. On a theoretical level, intergenerational
studies may help testing hypotheses about neuromarkers
coming from case-control studies. On a more practical
level, the composite markers identified in parent-child stud-
ies, which may not be causal but correlated with aspects of
the disorder (Lenzenweger 2013), might in the future serve
as useful indicators of the disorder for diagnosis, prevention
and tracking of illness state (Malcolm and Phillipou 2021).
Multigenerational studies can also identify familial markers
which, combined with improved designs allowing for pars-
ing out genetic from environmental variance (which is cur-
rently lacking), may inform in the future about the etiology
of psychiatric and neurodevelopmental disorders (Flint et al.
2014; Fehlbaum et al. 2022).
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