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Abstract
Chronic stress (CS) can have long-lasting consequences on
behavior and cognition, that are associated with stable
changes in gene expression in the brain. Recent work has
examined the role of the epigenome in the effects of CS on the
brain. This review summarizes experimental evidence in ro-
dents showing that CS can alter the epigenome and the
expression of epigenetic modifiers in brain cells, and critically
assesses their functional effect on genome function. It dis-
cusses the influence of the developmental time of stress
exposure on the type of epigenetic changes, and proposes
new lines of research that can help clarify these changes and
their causal involvement in the impact of CS.
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Introduction
Situations that are demanding or threatening trigger a
physiological stress response that allows an individual to
cope and adapt to the perceived challenges [1]. In
mammals, the stress response is mediated by the
concomitant activation of the locus coerulus/noradren-
aline pathway and the hypothalamic-pituitary-

adrenocortical (HPA) axis in the brain, which leads to
heightened alertness, enhanced memory formation and
mobilization of energy resources. Activation of the HPA
www.sciencedirect.com
axis results in the secretion of glucocorticoids in circu-
lation, which bind to glucocorticoid receptors in many
cells across the body [2]. Since glucocorticoid receptors
are nuclear receptors, their activation causes epigenetic
and transcriptional changes in the cell nucleus [3]. Pe-

riods of dynamic brain development in early postnatal
life and adolescence are particularly sensitive to stress
and the brain has heightened susceptibility during these
periods. This review focuses on the effects of chronic
stress (cs) during these time periods. The majority of
the presented findings are derived from rodent models
in which CS is induced by physical challenge such as
restraint or forced swim, or social challenge such as
maternal separation in early life or social defeat in
adulthood. In the most severe paradigms, stressors are
delivered unpredictably which intensifies their effects

on the animals.
Epigenetic regulation of gene expression
The genome is compacted and highly organized in the
form of chromatin in the cell nucleus. The fundamental

unit of chromatin is the nucleosome which consists of an
octamer of histone proteins (H2A, H2B, H3 and H4)
that wraps around the DNA. Chromatin is the context
upon which transcriptional control takes place, medi-
ated primarily by the activity of transcription factors
(TFs) and epigenetic mechanisms. Epigenetic mecha-
nisms here are molecular processes that mark chromatin
and modify genome activity without changing the DNA
sequence [4].

At least five different epigenetic mechanisms involved

in the control of gene expression can be distinguished 1)
chemical modifications of the DNA, particularly CpG
methylation (5-methyl cytosine, 5mC), 2) histone post-
translational modifications (HPTMs) such as acetyla-
tion, methylation and phosphorylation, and histone
variants, 3) nucleosome remodeling, 4) non-coding
RNAs and 5) chromatin three-dimensional (3D) orga-
nization [5]. Modifications to DNA and histones are
catalyzed by epigenetic enzymes called writers such as
DNA methyltransferases (DNMTs) and histone acetyl-
and methyl-transferases, and are removed by erasers

such as DNA demethylases (TETs) and histone
deacetylases (HDACs) and demethylases (HDMs).
Importantly, the recruitment of writers and erasers is
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mediated primarily by TFs and non-coding RNAs but
can also be mediated by HPTMs themselves [6,7].

Chromatin structure can also vary as a function of the
arrangement of nucleosomes due to electrostatic in-
teractions between HPTMs, the binding of TFs and the
activity of ATP-dependent chromatin remodellers [8].
Epigenetic mechanisms can impact chromatin 3D or-

ganization by influencing the dynamics of long-range
interactions between enhancers and promoters and by
segregating the genome in the nuclear space into active
(eu-) or inactive (hetero-) chromatin [9,10].

Epigenetic mechanisms functionally operate mainly at
regulatory elements such as enhancers and promoters in
the genome and are highly interdependent and revers-
ible [5]. They are tightly controlled during development
and are major determinants of cell differentiation and
maturation in the brain that can respond and modify

genome activity and functions upon experience [11,12].
Effects of CS on the epigenome
Most brain regions respond to stress, and include the
hippocampus involved in learning and memory, the

prefrontal cortex (PFC) involved in executive functions
and impulse control, the amygdala, the core emotion
center, and the ventral tegmental area and nucleus
accumbens (NAc), areas for reward and aversion
processing (Figure 1). While a healthy stress response is
a form of adaptation, CS such as prolonged conflict,
threat, fear or pressure can persistently affect brain
functions by altering gene expression [13] and neuronal
connectivity [14,15]. Changes in different brain regions
can converge to alter multiple circuits and
Figure 1

Epigenetic regulators in the brain affected by CS. Scheme showing epigenetic
genes coding for TFs or gene regulation affected by CS in major brain nuclei an
and dopaminergic (blue) circuits. Amygdala (Amy), hippocampus (Hip), nucleu
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neurotransmitter pathways resulting in large and com-
plex effects on brain functions and behavior (Figure 1).
The lasting effects of CS on the brain are in part
mediated by transcriptional changes and epigenetic
mechanisms that are differentially regulated across the
animal’s lifespan [16].

Irrespective of time of exposure, CS affects the level

and genome-wide deposition of epigenetic modifica-
tions. These modifications have been primarily profiled
in bulk tissue, and in some cases in specific cellular
populations such as sub-types of neurons and glia
[17,18]. The recent application of proteomic approaches
and the simultaneous characterization of genome-wide
deposition of HPTMs and DNA methylation have
begun to uncover the true complexity of the regulatory
response of brain cells to CS [18e22]. The effects of CS
on the epigenome are multiple and several epigenetic
processes are simultaneously acting across brain regions

in a cell-type and gender-specific manner in rodents and
humans [18,21]. Further, the epigenomic response to
CS evolves over time, resulting in different regulatory
responses at the time of exposure and after cessation of
CS [18]. Below, we summarize recent findings, partic-
ularly on HPTMs, that highlight their involvement of
epigenetic factors in the effects of CS on the brain.

CS simultaneously affects different epigenetic
processes
The relative abundance of HPTMs and histone variants
can be modified by CS in the brain [18e20]. Mice
exposed to maternal separation and low home cage
nesting from PND10 to 17 have altered level of

euchromatin-associated HPTMs e.g. H3K79me2 and
enzymes including writers and erasers of DNA methylation and HPTMs,
d connecting projections involving GABAergic (red), glutamatergic (green)
s accumbens (NAc), prefrontal cortex (PFC), ventral tegmental area (VTA).
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H4K5ac and heterochromatin-associated e.g. H3K9me1
in nucleus accumbens (NAc) that persist across time
after exposure (at PND21, PND35 and adulthood) [18].
Such stress had first been shown to increase the level of
H3K27me1 in NAc, similarly to chronic social defeat
stress in adult males [20]. Both stress paradigms also
resulted in lower level of the euchromatin-associated
histone variant H3.3 in NAc [19]. The changes in

HPTMs and histone variants were modest and affected
primarily males, with only a trend in females [18].
These findings have at least two important implications:
1) different epigenetic mechanisms can be simulta-
neously affected by CS in the same brain region, and 2)
CS can impact the same epigenetic modification e.g.
H3K27me1 and H3.3, independently of time of expo-
sure and experimental paradigm. Data from humans
with a history of adverse childhood events (ACE) sup-
port these findings. Individuals with ACE have changes
in the deposition of promoter- and enhancer-associated

marks H3K4me1,3 and H3K27ac, the elongation-
associated mark H3K36me3, the repressive marks
H3K27me3 and H3K9me3, and DNA methylation at
thousands of genomic regions in the amygdala, in turn
affecting H3K27ac deposition at gene bodies [21].
Therefore, brain cells can respond to CS by altering the
abundance and genomic-deposition of both euchro-
matin- and heterochromatin-associated HTPMs, likely
reflecting the dynamic activation and repression of gene
transcription associated with CS. In this regard, a key
question is whether the observed effects occur simul-

taneously in every cell type of the brain region under
analysis or rather represent regulatory responses of
specific cell types in that region. The 2nd is probably
the case at least for the effect of CS in early life on the
level H3K79me2 in NAc [18]. In this case, expression of
the histone H3K79 methyl-transferase Dot1l was altered
in dopaminergic medium spiny neurons of NAc in adult
males [18], suggesting that epigenomic responses to CS
may result from cell-type specific changes in the
expression of epigenetic modifiers.

CS results in transient and long-lasting effects on
epigenetic modifications
The longitudinal characterization of changes to the

epigenome due to CS started to reveal the dynamics of
the regulatory response to CS and its potential lasting
consequences [18,23]. Maternal separation from
PND10 to 17 differentially alters HPTMs in NAc across
life [18]. For instance, while H3K27me1 is increased 4
days after the end of stress (PND21) and remains high
in adulthood [18], H3K9me1 is significantly reduced at
PDN21 but back to normal in adulthood [18]. Other
HPTMs such as H3K79me1-2 are significantly altered
only in adulthood [18], suggesting a complex dynamic of
HPTMs including transient, long-lasting and deferred

effects. Likewise, in mice exposed to maternal separa-
tion from PND2 to 15, the level of H4K8ac, H4K12ac
www.sciencedirect.com
and H4K5ac is first decreased at PND21 but then in-
creases at PND60 in the neocortex [24]. Such temporal
dynamics of HPTMs changes is also observed if CS is
applied in adolescence or adulthood. In adolescent rats
exposed to inescapable foot shock from PND21 to 26,
the level of H3K9me2 increases in the hippocampus and
PFC at PND28 and adulthood, suggesting an enduring
effect of CS [23]. Thus, the effects of CS can unfold

overtime, highlighting an unappreciated complexity
whose functional consequences are unknown.
CS differentially affects the abundance and genomic
distribution of epigenetic modifications
With some notable exceptions [18,20,22], it is common
practice to characterize the level or genomic distribu-
tion of a given epigenetic mark in a tissue after stress.
These two features provide important but different in-
formation and do not necessarily correlate. A change in
the level of a HPTM does not predict if this HPTM is
also differentially distributed on the genome. For
instance, while H3K79me2 (measured by mass spec-
trometry) is overall lower after CS in early life, its
genomic distribution (profiled by ChIP-seq) is modified,

thus the mark is re-localized rather than reduced
genome-wide [18]. In contrast, H3K27me1 is increased
by chronic social defeat in NAc of susceptible in-
dividuals, and its genomic deposition is also consistently
increased but only at intronic regions [20]. This sug-
gests that additional mechanisms determine the precise
genomic localization of a HPTM, but these mechanisms
remain unknown. When assessing the epigenomic ef-
fects of CS, it is therefore important to measure both,
the level and genomic distribution of HPTMs for a more
accurate characterization.
Genotype influences the response of the epigenome
to CS in the brain
Genotype also strongly influences the response of the
epigenome to CS. In mice, the effects of maternal
separation on histone acetylation in the neocortex are
strain-specific, and are evident in Balb/cJ mice but not
in C57Bl/6J mice [24]. In humans, allelic variants at the
enhancer of cisetrans prolyl isomerase Fkbp5, a co-
chaperone that regulates steroid hormone receptors
and a major regulator of glucocorticoid signaling in the
stress response, influence their own DNA methylation,
resulting in decreased DNA methylation in individuals
with a history of childhood trauma [25]. Several other

polymorphisms in Fkbp5 locus can alter long-range DNA
interactions and impact Fkbp5 transcription [25]. This
in turn alters Fkbp5 level and glucocorticoid sensitivity
as observed in stress-related conditions such as post-
traumatic stress disorder and major depression [26].
These findings highlight the influence of the genetic
background on the epigenetic and transcriptional
response to stress.
Current Opinion in Neurobiology 2024, 84:102832
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Transcriptional implications of changes in
the epigenome induced by CS
Functionally, the epigenomic effects of CS have been
correlated with transcriptional changes and behavioral
phenotypes. However, whether epigenetic changes are
causally linked to transcription or are a by-product of
transcriptional activity is an unresolved question.
Recent elegant mechanistic assays investigating the
direct contribution of epigenetic modifications to gene
expression have revealed unexpected findings chal-
lenging long-standing assumptions about the role of
epigenetic modifications on gene transcription [27e30].
These findings have profound implications for the

interpretation of the effects of CS on the epigenome
and transcription.

Transcriptional implications of CS-induced changes
in DNA methylation
Ample evidence from rodents and humans indicates that
CS induces genome-wide changes in DNA methylation
in brain cells. These changes primarily occur at intergenic
regions and gene bodies and have been correlated with
alterations in gene expression [22,31,32]. In mice
exposed to brief maternal separation from PND4 to 6, the
level of DNA methylation is altered at thousands of
genomic regions in the hypothalamus. This mainly in-

cludes intergenic and intronic regions of genes involved
in synapse assembly and neuron migration, as well as a
subset of promoters [32]. Functionally, the effect of DNA
methylation on transcription is influenced by genomic
location. At promoter elements, direct inhibition of TF
binding is the prevailing mode of gene repression by
DNA methylation [33]. This mechanism of action is
consistent with the observation that CS can increase
DNA methylation at promoter elements of genes
involved in the regulation of the HPA axis e.g. Nr3c1
encoding the glucocorticoid receptor [34] and of

neuronal growth e.g. Bdnf [35]. This results in tran-
scriptional repression of these genes, likely as a conse-
quence of TF binding disruption [36]. Therefore,
modulation of DNA methylation by CS at promoters may
directly affect gene expression via differential TF bind-
ing. Importantly, differences in DNA methylation at
regulatory elements can persistently alter TF binding, a
phenomenon associated with chromatin memory [37,38]
that may explain long-lasting effects of CS
on transcription.

The functional consequences of changes in DNA

methylation at gene bodies is less direct and require
careful interpretation. On one side, it is likely that some
of the reported alterations in DNA methylation at genes
in the context of CS have been misclassified and actually
affect intragenic enhancers and alternative promoters.
Indeed, the majority of tissue-specific enhancers are
located in introns [39] and the activity of some enhancers
is affected by DNA methylation, mainly via changes in
Current Opinion in Neurobiology 2024, 84:102832
TF binding [40,41]. In this context, intragenic DNA
methylation at regulatory elements has been shown to
regulate cell-type specific gene expression [41] and to
restrict transcriptional initiation at canonical transcrip-
tion start site (TSS) by suppressing spurious transcrip-
tional initiators [42]. For cases where DNA methylation
at genes is not located at regulatory elements, the
observed differences in methylation could influence

alternative splicing [43]. They may also alter the rate of
RNA Pol II initiation at long and highly methylated genes
in the brain, via interaction with the methyl-DNA-
binding repressor protein MeCP2 [44]. Genic DNA
methylation may also be just a co-transcriptional event,
since it is known that it can be established during tran-
scriptional elongation, via recruitment of de novo DNA
methyltransferases by the elongation-specific HPTM
H3K36me2, -3 [45]. Therefore, it is plausible that a
subset of genic changes in DNA methylation due to CS
derive from co-transcriptional effects reflecting alter-

ations in transcription. Today, available evidence that
changes in genic DNA methylation induced by CS have
functional consequences is only correlative, which war-
rants more mechanistic work.

Transcriptional implications of CS-induced changes
in HPTMs
Changes in HPTMs have been implicated in the
observed effects of CS on transcription that ultimately
affect behavior and cognition [18,20]. The direct influ-
ence of HPTMs on the regulation of gene expression has
however recently been questioned [27]. Accumulating
evidence in different model organisms and cell-types
challenges the prevailing view that HPTMs are instruc-

tive for transcription, particularly transcriptional activa-
tion [28e30]. Thus, caution should be used when
suggesting a relationship between changes in HPTMs
and transcription in the context of CS, particularly in
correlative analysis derived from genome-wide datasets.
For instance, CS has been reported to affect the abun-
dance and deposition of HPTMs classically associated
with transcriptional activation such as H4K5ac, H4K8ac,
H4K12ac, H3K4me3 and H3K27ac [18,20,21,24]. Simi-
larly to what has been reported for DNAmethylation, the
majority of these changes occur at gene bodies [21], thus

with uncertain effects on transcription. Current evidence
indeed does not support a direct role for histone H3K4
methylation and H3K27ac in the maintenance of tran-
scriptional states since these HPTMs are largely
dispensable for steady-state transcription [28e30].
Further, inhibition of transcription is sufficient to induce
the loss of H3K27ac genome-wide [29], suggesting that
for some HPTMs, their observed pattern of genome oc-
cupancy might reflect a co-transcriptional event rather
than HPTMs governing transcription. However, HPTMs
may support stimulus-dependent gene expression. His-

tone acetylation is important for transcriptional bursting
of activity-dependent genes such as c-Fos in neurons [46].
www.sciencedirect.com
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H3K4me3 may affect transcription since its deposition is
mutually exclusive with DNA methylation [47]. There-
fore, it is reasonable to suggest that while changes in
HPTMs deposition at stimulus-dependent promoters or
enhancers may directly affect transcriptional activation,
changes at genic or intergenic regions are rather an in-
direct effect of transcription, that may be mediated by
differential activity or expression of TFs, as has been

reported for Oxt2 in the context of CS in early life [48].

Other HPTMs with less characterized role in tran-
scription such as H3K79me2 and H3K37me1 have
recently been shown to be altered by CS and may in-
fluence transcriptional programs leading to behavioral
and cognitive deficits [18,20]. In a mouse model of CS
in early life, H3K79me2 deposition was increased at loci
encoding TFs in NAc. This increase was prominent at
gene bodies and partially correlated with gene expres-
sion [18]. Remarkably, reduction of H3K79-

methyltransferase Dot1l in NAc dopaminergic neurons
in adult mice exposed to CS in early life reversed their
impairment in social interaction, decreased anxiety and
improved stress coping [18]. Conversely, Dolt1 over-
expression phenocopied the behavioral phenotype.
These manipulations also altered NAc transcriptome.
Importantly, systemic administration of an inhibitor of
DOT1L could rescue behavior after CS [18]. Together,
these results suggest that the activity of DOT1L is
relevant to sustain behavioral abnormalities induced by
CS in early life. However, it should be noted that his-

tone modifiers can have non-histone targets and non-
catalytic activity that can influence gene expression
[27,49]. DOT1L can physically interact with other
regulatory proteins such as the estrogen receptor [50]
and is involved in different nuclear processes beyond
gene transcription in different cell types [51]. There-
fore, in the absence of specific manipulations for
instance, using catalytic mutants and assessing their
effect on transcription in appropriate cell types [27], it
is difficult to establish a direct functional link between
altered HPTMs and behavioral phenotypes.

Effects of CS on the expression of
epigenetic modifiers
One of the possible routes by which CS alters the
epigenome is by directly affecting the transcription and
synthesis of epigenetic modifiers. CS can dysregulate
the expression of epigenetic modifiers distinctly in
different cell types, brain regions and in females and
males (Figure 1 and Table 1). Below, we highlight some

of the expression patterns of epigenetic modifiers
observed as a consequence of CS exposure and discuss
their implications for the epigenome.

CS can alter the expression of antagonistic epigenetic
modifiers. For example, it can lead to simultaneous
transcriptional activation of both, a writer and eraser of
the same histone modification. Maternal separation and
www.sciencedirect.com
low home cage nesting from PND10 to 17 results in
transcriptional up-regulation of the histone H3K79
methyl-transferase Dot1l and its associated histone-
demethylase Kdm2b in dopaminergic medium spiny
neurons of NAc in adult males [18]. Such concomitant
transcriptional activation of a writer and eraser of the
same HPTM may explain the co-existence of regions
that gain and loose H3K79me2 in NAc in response

to CS.

CS can also differentially affect the expression of similar
types of epigenetic regulators such as histone modifiers,
depending on time of exposure and genetic background.
In adult mice exposed to maternal separation from
PND2 to 15, the expression of Hdac1, 3, 7, 8, and 10 is
decreased specifically in the neocortex in Balb/cJ but
not in C57Bl/6J mice, and this effect emerges only if
exposure occurs before PND21 [24]. In contrast, in
adult mice exposed to chronic social defeat stress for 10

days, the expression of Hdac5 and 8 and Sirt2, 3 and 6 is
decreased in PFC [52]. These observations suggest that
the type of experience, the developmental time of
exposure and the genetic background influence the
regulation of epigenetic modifiers across brain regions in
the context of CS.

CS can also alter the expression of specific epigenetic
modifiers independently of time of exposure and stress
paradigm. For example, CS systematically alters the
expression of de novo DNA methyltransferase Dnmt3a
across brain regions. In mouse pups at PND7, Dnmt3a
expression is transiently down-regulated in the hippo-
campus by low maternal care [53] while in adults
exposed to chronic social defeat stress for 10 days,
Dnmt3a is down-regulated in PFC [54]. Further, in a rat
model of post-traumatic stress, protein level of Dnmt3A
is reduced in NAc [22]. The functional outcome of
these changes is indeed different. In pups, they resulted
in reduced DNA methylation of LINE-1 (L1) retro-
transposon promoter and increased L1 transcription and
retrotransposition in neurons [53]. In adults, lower
Dnmt3a transcription in PFC correlated with increased

anxiety-like behavior while Dnmt3a over-expression in
PFC decreased anxiety [54]. In adult rats exposed to
traumatic stress, reduction of Dnmt3A resulted in
widespread changes in DNA methylation that differed
between resilient and susceptible animals [22]. These
observations highlight the context-dependency of the
effects of dysregulation of an epigenetic modifier by CS.

Further, CS can differentially affect epigenetic modifiers
as a function of susceptibility or resilience to stress. In
adult mice, chronic social defeat stress for 10 days in-

creases the expression of ACF ATP-dependent chro-
matin-remodeling complex in NAc only in susceptible
individuals. Remarkably, in humans suffering from
depression, the expression of members of the ACF
chromatin-remodeling complex is also up-regulated in
Current Opinion in Neurobiology 2024, 84:102832
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Table 1

CS effects on the expression of epigenetic modifiers and TFs in the brain.

Epigenetic
factor/TF

Species Sex Model of stress
exposure

Age of
exposure

Details of stress
model

Time of
measurement

Analysed brain
region

Effect on mRNA Effect on protein Reference

Dnmt1 Rat (Wistar) Male Maternal separation
(MS)

PD2 3 h separation PD2-
14

1 day after MS
cessation

mPFC Up-regulated by
MS

ND [61]

Dnmt3a Rat (Sprague
Dawley)

Male Chronic unpredictable
stress (CUS)

3-week-old CUS for 14
consecutive days

5–7 days after
CUS cessation

mPFC and
prelimbic cortex

Down-regulated by
CUS

Reduced by CUS [62]

Mouse (C57Bl/
6J)

Male Chronic social defeat
stress (CSDS)

9-week-old CSDS for 10
consecutive days

11 days after
CSDS cessation

Hippocampus ND Lower number of
neurons
expressing high
level of Dnmt3a
in CSDS-
susceptible
animals

[63]

Mouse (C57Bl/
6J)

Male CSDS 9-week-old CSDS for 10
consecutive days

After last day of
CSDS

PFC, central
amygdala (CeA)
and CA1 of
hippocampus

Down-regulated in
PFC by CSDS; Up-
regulated in CeA
by CSDS

ND [54]

Rat (Wistar) Male MS and MS + stressful
social experience (SSE)

PD5 3 h separation PD5-
10

PD31
(Adolescence)
PD81 (Adult)

Amygdala Up-regulated by
MS and MS + SSE
in Adolescents and
Adults

ND [64]

Rat (Wistar) Male MS PD2 3 h separation PD2-
14

1 day after MS
cessation

mPFC Up-regulated by
MS (and handling)

Increased by MS [61]

Mouse (C57Bl/
6J)

Male Differences in maternal
care

PD1-14 High and low-
maternal care

PD0, PD7 and
PD21

Hippocampus Reduced
expression in low-
maternal care pups
at PD7

ND [53]

Mouse (C57Bl/
6J)

Male CSDS Adult(?) CSDS for 10
consecutive days

1 and 11 days after
CSDS cessation

NAc Up-regulated by
CSDS

ND [65]

Dnmt3b Rat (Sprague
Dawley)

Male CUS 3-week-old CUS for 14
consecutive days

5–7 days after
CUS cessation

PFC Down-regulated in
CUS

ND [62]

Rat (Wistar) Male MS PD2 3 h separation PD2-
14

1 day after MS
cessation

mPFC Up-regulated by
MS (and handling)

ND [61]

HDAC1 Mouse (Swiss-
Webster)

Male Social isolation (SI) >3-week-old Housed individually
for 4–6 weeks

NIA Hippocampus Up-regulated by SI
(susceptible)

ND [66]

Mouse (Balb/cJ) Male MS PD2 3 h separation PD2-
15

PD21, PD28 and
PD60

Forebrain
neocortex (FN)
and
Hippocampus

PD21 and PD28:
Up-regulated by
MS in FN
PD60: Down-
regulated by MS in
FN

ND [24]

HDAC2 Mouse (C57Bl/
6J)

Male Chronic restrain stress
(CRST)

7-week-old CRST for 14
consecutive days

17 days post CRST Hippocampus Down-regulated by
CRST

Reduced in CA1
and CA3
pyramidal
neurons

[67]
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Mouse (C57Bl/
6J)

Male MS PD9 24 h MS PD14-21 Ventral tegmental
area (VTA)

ND Increased by MS
in the nuclear
fraction of
dopaminergic
neurons

[68]

HDAC3 Mouse (Balb/cJ) Male MS PD2 3 h separation until
PD15

PD21, PD28 and
PD60

FN and
Hippocampus

PD21 and PD28:
Up-regulated by
MS in FN
PD60: Down-
regulated by MS in
FN

ND [24]

HDAC5 Rat (Sprague
Dawley)

Male Maternal separation
(MS)

PD1 3 h separation PD1-
21

PD78 Hippocampus Up-regulated by
MS

ND [69]

Rat (Sprague
Dawley)

Male Restraint stress (RS) 8 week-old 2 h per day for 3
weeks

PD78 Hippocampus Up-regulated by
MS

ND [69]

Mouse (C57BL/
6)

Male Chronic restraint stress
(CRST)

7 week-old 2 h restrain per day
for 14 days

17 days post CRST Hippocampus Down-regulated by
CRST

ND [67]

Rat (Sprague
Dawley)
Mouse (C57BL/
6)

Male Chronic unpredictable
stress (CUS)

8 week-old CUS for 28 days 1 day post CUS Hippocampus ND Increased by
CUS

[70]

Male Social defeat stress
(SDS)

Adult (NIA of
specific age)

SDS daily for 10
days

1 day post SDS NAc Down-regulated by
SDS

ND [71]

Rat (Sprague
Dawley)

Male Chronic unpredictable
stress (CUS)

8 week-old CUS for 28 days 1 day post CUS Hippocampus
and Prefrontal
cortex

Up-regulated by
CUS in both areas

Increased by
CUS in both
areas

[72]

HDAC7 Mouse (C57BL/
6)

Male Social defeat stress
(SDS)

6–8 weeks old SDS for 10 days 5 days post SDS NAC,
Hippocampus
and Prefrontal
cortex

Up-regulated by
SDS in Nac

Increased by
SDS in Nac

[73]

Mouse (Balb/cJ) Male Maternal separation
(MS)

PD2 3 h separation until
PD15

PD21, PD28 and
PD60

Forebrain
neocortex and
Hippocampus

PD21: Down-
regulated by MS in
FN
PD28: Down-
regulated by MS in
FN
PD60: Down-
regulated by MS in
FN

ND [24]

HDAC8 Mouse (Balb/cJ) Male Maternal separation
(MS)

PD2 3 h separation until
PD15

PD21, PD28 and
PD60

Forebrain
neocortex and
Hippocampus

PD21: Up-
regulated by MS in
FN
PD28: Up-
regulated by MS in
FN
PD60: Down-
regulated by MS in
FN

ND [24]

HDAC10 Mouse (Balb/cJ) Male Maternal separation
(MS)

PD2 3 h separation until
PD15

PD21, PD28 and
PD60

Forebrain
neocortex (FN)
and
hippocampus

PD21: Up-
regulated by MS in
FN
PD28: Up-
regulated by MS in

ND [24]

(continued on next page)
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Table 1. (continued )

Epigenetic
factor/TF

Species Sex Model of stress
exposure

Age of
exposure

Details of stress
model

Time of
measurement

Analysed brain
region

Effect on mRNA Effect on protein Reference

FN
PD60: Down-
regulated by MS in
FN

Suv39h1 Mouse (C57BL/
6)

Male Chronic restraint stress
(CRST)

7 week-old 2 h restraint per day
for 14 days

17 days post CRST Hippocampus Down-regulated by
CRST

Reduced in CA1
and CA3
pyramidal
neurons

[67]

Ga9 Mouse (C57BL/
6)

Male Chronic restraint stress
(CRST)

7 week-old 2 h restraint per day
for 14 days

17 days post CRST Hippocampus Down-regulated by
CRST

ND [67]

Jmjd2a Mouse (C57BL/
6)

Male Chronic restraint stress
(CRST)

7 week-old 2 h restraint per day
for 14 days

17 days post CRST Hippocampus Down-regulated by
CRST

ND [67]

MeCP2 Mouse (Swiss
Webster)

Male Social isolation (SI) >3 week-old Housed individually
for 4–6 weeks

NIA Hippocampus Up-regulated in SI
(aggressive)

ND [66]

Rat (Wistar) Male Maternal separation
(MS)
Maternal
separation + Stressful
social experience
(MS + SSE)

PN5 3 h separation PD5-
10

PD31
(Adolescence)
P81 (Adult)

Amygdala Up-regulated by
MS and MS + SSE
in adolescents and
adults

ND [64]

Mouse (C57BL/
6n)

Male Maternal separation
(MS)

PN1 3 h separation PD1-
10

PD10 and 6 week-
old

PVN AVP-
expressing
neurons

No change No change;
increased levels
of MeCP2-S438
phosphorylation
at PD10

[74]

Tet2 Mouse (Swiss
Webster)

Male Social isolation (SI) >3 week-old Housed individually
for 4–6 weeks

NIA Hippocampus Down-regulated SI
(aggressive)

ND [66]

Tet3 Rat (Wistar) Male Maternal separation
(MS)
Maternal
separation + Stressful
Social Experience
(MS + SSE)

PN5 3 h separation PD5-
10

PD31
(Adolescence)
P81 (Adult)

Amygdala Up-regulated by
MS in adolescents;
up-regulated by
MS + SSE in
adolescent and
adult

ND [64]

REST Rat (Wistar) Male Maternal separation
(MS)
Maternal
separation + Stressful
Social Experience
(MS + SSE)

PN5 3 h separation PD5-
10

PD31
(Adolescence)
P81 (Adult)

Amygdala Up-regulated by
MS in adolescents
but down-regulated
in adults
Up-regulated by
MS + SSE in
adolescents and
adults

ND [64]

Rat (Sprague
Dawley)

Male Maternal separation
(MS)

PD2 1 h from PD2-8 P28-31 Hippocampus ND Decreased by
MS in the dentate
gyrus of the
hippocampus

[57]
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HSP90 Rat (Wistar) Male Maternal separation
(MS)
Maternal
separation + Stressful
Social Experience
(MS + SSE)

PN5 3 h separation PD5-
10

PD31
(Adolescence)
P81 (Adult)

Amygdala Up-regulated by
MS and MS + SSE
in adolescents and
adults

ND [64]

CBP Rat (Sprague
Dawley)

Male Chronic unpredictable
stress (CUS)

8 week-old CUS for 28 days 1 day post CUS Hippocampus
and Prefrontal
cortex

Down-regulated by
CUS in both areas

Decreased by
CUS in both
areas

[72]

Suz12 Mouse (C57BL/
6)

Male Social Defeat Stress
(SDS)

Adult (NIA) SDS for 10 days 24 h post SDS NAc Up-regulated by
SDS in Nac of
susceptible
animals

ND [20]

Dot1l Mouse (C57BL/
6)

Male and
female

Maternal separation
(MS) and low home cage
nesting

PD10-17 4 h daily for 8 days PD21, PD35 and
PD70-80 (Adult)

NAc Up-regulated by
MS in NAc of adult
males and females

Increased by MS
in NAc of PD21
and adult males

[18]

Kdm2b Mouse (C57BL/
6)

Male and
female

Maternal separation
(MS) and low home cage
nesting

PD10-17 4 h daily for 8 days PD21, PD35 and
PD70-80 (Adult)

NAc Up-regulated by
MS in NAc of adult
males and females

ND [18]

BAZ1A Mouse (C57BL/
6)

Male and
female

Social Defeat Stress
(SDS)

7–8 week-old SDS for 10 days 48 h, 10- and 28-
days post SDS

NAc and mPFC Up-regulated by
SDS in Nac of
susceptible
animals

Increased in Nac
of SDS-
susceptible
animals (48 h
after SDS)

[20]

GR Rat (Long-
Evans)

Male Maternal care: high and
low-maternal care

Adult Maternal care: high
and low-maternal

PD6 and PD90 Hippocampus Down-regulated in
individuals
exposed to low-
maternal care

Decreased in
individuals
exposed to low-
maternal care

[34,36]

MR Mouse (C57BL/
6)

Male and
Female

Maternal separation and
unexpected maternal
stress (MSUS)

PD1 3 h MSUS from PD1-
14

Adult Hippocampus Down-regulated by
MSUS

ND [75]

Otx2 Mouse (C57BL/
6)

Male Maternal separation
(MS) and low home cage
nesting

PD10-17 4 h daily for 8 days PD10, PD21, PD45
and PD70

VTA Down-regulated by
maternal
separation (MS)
and low home cage
nesting at P21

Decreased cells
expressing OTX2
protein in VTA at
PD17

[48]

ND; not determined.
NIA; no information available.
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NAc of post-mortem brain tissue [55], suggesting a
conserved molecular response to CS operating at the
level of chromatin structure. Interestingly, in adult male
mice, expression of the SWI-SNF ATP-dependent
chromatin-remodeling complex in dopaminergic neu-
rons of NAc is necessary for the social avoidance
phenotype induced by chronic social defeat stress [56].
This indicates that chromatin remodeling is key for the

molecular and behavioral consequences of CS.

Further to epigenetic modifiers, CS can also alter the
expression of TFs and co-factors. While TFs are not
epigenetic factors per se, they are essential for the regu-
lation and the establishment of epigenetic features and
their activity can be modulated by epigenetic mecha-
nisms. TFs can be dysregulated transiently e.g. OTX2
[48] or persistently e.g. GR [34], and be differentially
expressed during development e.g. REST [57] in rodents
and humans. At the functional level, a transient change in

abundance or activity of TFs has been proposed to prime
the epigenome [38,48] while a persistent change may
modify the overall regulatory landscape of the genome. In
adults, CS can persistently alter the expression of TFs. In
male mice subjected to chronic unpredictable stress, the
transcriptional level of the TF YY1 is down-regulated
specifically in excitatory neurons of PFC [58]. The se-
lective ablation of YY1 in these neurons increases the
susceptibility to stress, and affects transcription and the
deposition of HTPMs such as H3K27ac [58], further
highlighting the crosstalk between TFs, epigenetic

regulation and control of gene expression.
Perspectives
We envision at least four areas of focus that could help
better understand the epigenetic effects of CS in the
brain and their impact on behavior and cognition. First,

it is imperative to distinguish the temporal dynamic of
epigenetic changes identified in the context of CS. Not
all changes are enduring or represent a form of molecular
memory. Epigenetic changes can be transient and pre-
sent only at the time of exposure and shortly after, long-
lasting and persistent after exposure, or deferred and be
expressed only later e.g. in adulthood in the case of
postnatal exposure. Therefore, time course analyses to
evaluate changes to the epigenome at different time
points are essential to distinguish the dynamics of the
observed molecular changes. Second, causality between

epigenetic changes due to CS and effects observed on
gene expression should be examined in the relevant
cellular context. Modeling epigenetic modifications in
specific regulatory elements of loci of interest e.g. using
CRISPR tools is a strategy to demonstrate such causal-
ity. Third, the interplay between genetic variability and
history of stress exposure must be examined to deter-
mine if changes in the epigenome are linked to a genetic
background of susceptibility e.g. reflected by genetic
variants. The genetic make-up of individuals has a major
Current Opinion in Neurobiology 2024, 84:102832
effect on the emergence of stress-induced phenotypes
and their molecular effects. Fourth, integrated profiling
of the different epigenetic marks and mechanisms
regulating gene expression in the context of stress is
needed. These marks and mechanisms do not act
separately but are interrelated and cooperate to modify
chromatin structure and organization and modulate co-
factors and TFs. Multimodal experimental approaches

that characterize multiple levels of epigenetic informa-
tion would greatly benefit the mechanistic under-
standing of epigenomic effects of stress. Efforts should
also be made to develop a unifying molecular theory of
the long-lasting effects of CS on genome activity and
provide experimental evidence for these effects. The
possibility that CS can affect individuals across genera-
tions, in some cases by involving epigenetic factors in
the germline is an important area of research and a
paradigm shift in the understanding of the complex
traits and their pathologies [59].
Conclusions
Exposure to stress, in particular when chronic, can
induce changes in the epigenome of brain cells. These
changes are cell-type specific, affect different brain re-

gions and are influenced by genetic background, sex and
developmental time of exposure. At the functional level,
changes to the brain epigenome have been correlated
with changes in basal gene expression. In some cases,
they have been suggested to influence stimulus-
dependent transcriptional responses in the brain and
prime genome activity, and therefore represent a source
of molecular susceptibility of future regulatory re-
sponses. While in the past two decades, the field has
made enormous progress in documenting changes and
correlating them with differences in gene expression
and phenotypes, more mechanistic work is needed to

obtain a more integrative and holistic understanding of
the origin of epigenetic effects due to stress and their
impact on genome function and brain activity. The
recent use of tools for epigenetic editing and for
manipulating the expression of epigenetic regulators
in vivo is shifting the field from correlation to causality
[18,20,60]. However, the true nature, timing and dy-
namics of epigenetic changes triggered by CS and their
influence on basal or stimulus-dependent transcrip-
tional programs remain not fully known.
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